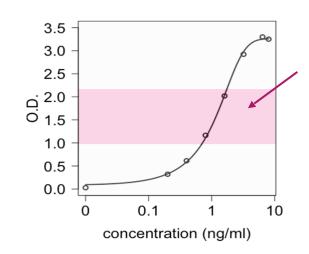
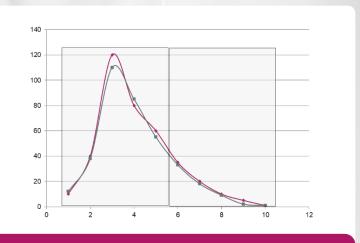


Case Study: Optimized Sample Analysis Set-up

Need


- Sponsor required a high statistical power in comparing originator and biosimilar
- Two-period, two-stage study design with approx.
 - 170 subjects in Stage 1
 - 100 subjects in Stage 2


Celerion's Approach

Celerion scientists developed a robust assay and performed sample analysis with minimal inter-compound variability

Analytical Set-Up

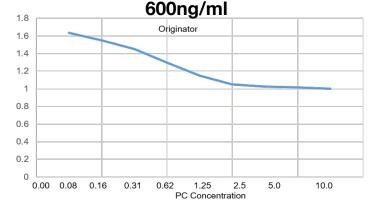
- Analyzed samples from both periods per subject in one analytical run
- Adjusted dilution schemes for both periods to determine concentrations within a small range of calibration curve

Benefit

- Sponsor could meet all statistical endpoints in Stage 1 and was able to forgo the second stage
- Sponsor was able to avoid over 2 Million EUR in additional cost and 5 months of delay opyright 2020 Celerion, Inc.

Case Study: Sensitivity of Neutralizing Antibody Assay

Need


Neutralizing antibody (nAb)
assay sensitivity should be as
close as possible to the anti drug antibody assay sensitivity
to detect crucial neutralizing
antibodies

Celerion's Approach

Based on Celerion's
 experience, positive controls
 (PC) raised against the
 Biosimilar led to a good
 sensitivity of the neutralizing
 assay as compared to the
 nAb using a commercial
 positive controls

Analytical Set-Up

Sensitivity of a CBA nAb with a the best commercial anti-Originator Positive Control:

Sensitivity of a CBA nAb with anti-Biosimilar Positive Control: 200ng/ml

Benefit

- Improved assay sensitivity achieved using a specific generated anti-biosimilar positive control
- Further, comparing sensitivity of both positive controls can be regarded as an additional proof of principle of "Biosimilarity" for the neutralizing assay

Sensitivity increase by a factor of 3 if the positive controls are raised against both compounds