

Trials and Tribulations for an Intranasal Peptide: Davunetide, lessons learned

February 25, 2014 Bruce Morimoto, PhD Executive Director, Applied Translational Medicine

Davunetide Discovery

ADNP is a Natural Neuroprotectant

- Essential for brain development
- Synthesized in response to injury
- Important in learning and memory
- Neuronal expression (cerebellum, mesencephalon, pons, medullar oblongata)
- Cytoplasmic & axonal localization
- Heterozygous animals (ADNP +/-): memory impaired
- Davunetide ameliorates impairment

Normal Embryo

ADNP Knockout has disrupted brain formation: Dies in utero

Fundamental Mechanism of Action

Microtubules

Essential for neuronal structure and function

Neurodegeneration

- Destabilization and breakdown of microtubules
- Tau hyperphosphorylation
- Progressive loss of function
- Leads to cell death

Neuroprotection

- Davunetide crosses the human blood brain barrier
- Reduces Tau hyperphosphorylation
- Stabilize and repair microtubules
- Restore neuronal structure and function

Summary of Davunetide Pharmacology

Davunetide promotes neuronal survival against a variety of insults including :

- Excitotoxicity
- Glucose deprivation
- Oxidative stress
- MPP+
- Microtubule poisons

Microtubule stabilization

Davunetide stabilizes microtubules and protects the organization of the cytoskeleton

J Biol Chem. 2004; 279:28531-8

Reduction of tau Phosphorylation

Davunetide reduces tau phosphorylation in the triple transgenic AD model (PS1_{M146V}, APP_{SWE}, and tau_{P301L})

J. Mol. Neurosci. 2007; 31: 165-170 JPET, 2008; 325:146-53

Clinical Development

P/C & Phase I

- Safety/PK Studies
- Safety to 60 mg/day
- CSF penetration
- Brain via systemic distribution
- Healthy/aged, AD, FTD
- 35 P/C studies in 17 models

Plla – Mild Cognitive Impairment

- 144 participants
- 2 doses (5 mg QD, 15 mg BID)
- 12 weeks
- Randomized, placebo controlled, double blind
- 17 US sites

Plla – Schizophrenia

- 63 participants
- 2 doses (5 mg QD, 15 mg BID)
- 12 weeks
- Randomized, placebo controlled double blind
- 7 US sites

PIIa – Schizophrenia Imaging Biomarker

- 18 participants
- 2 doses (5 mg QD, 15 mg BID)
- 12 weeks
- Randomized, placebo controlled double blind
- 3 US sites

PII/III Pivotal Study

- Progressive Supranuclear Palsy
- Tau pathology
- Rapid decline
- No effective treatment
- Validated rating scale
- Powered as a pivotal study

Progressive Supranuclear Palsy (PSP)

- A degenerative disease involving the brain stem, basal ganglia, cerebellum
- Clinical symptoms (movement problems, cognitive impairment) apparent result of the underlying tau pathology in the brain region controlling those functions

Steele JC, Richardson JC, Olszewski J. 1964 Arch Neurol;10: 333–59.

Williams and Lees; Lancet Neurol 2009; 8: 270-79

- Early-onset dementia characterized by tau pathology
- No available treatment
- Significant future potential in other sub-types of frontotemporal dementia and Alzheimer disease
- US Orphan granted (20,000 patients) EU Orphan granted (50,000 patients)
- Fast Track granted by FDA
- Appears to meet criteria for single study approval
- Phase II/III study powered as a pivotal study

PSP Study Design

- Phase II/III study in PSP
 - Recruited 313 patients
 - 1:1 active-to-placebo
 - Treated for 1 year
 - 47 clinical sites in US, Canada, Australia, Germany, UK and France

Clinical Endpoints

- Safety (adverse events, con meds)
- Efficacy (disease severity, daily living, cognitive, mood)
- Volumetric MRI
- CSF biomarkers
- DNA (tau genotype)
- Study unblinded in Dec 2012. Active, no different from placebo on any endpoint
- Valid study: PSP disease progression over 12 M as expected

Why Negative Results?

- PSP patient pathology too advanced?
 - Patients have established pathology, not possible to intervene
 - Clinical instruments not sensitive to detect drug effect
- Right dose? Sufficient drug exposure?
 - Marker for target engagement
 - Ability to verify mechanism of action
 - PSP study used single strength (30 mg BID)

Retrospective Risk-Mitigation

- Run pilot PSP study (Phase II)
 - Multiple doses (dose-response)
 - Biomarker intensive
 - Note: post-hoc analysis of the Phase II/III data suggests correlation between MRI, CSF and sub-scales of PSP-RS
 - More intensive PK/PD

General Lessons Learned

Manufacturing Scale-up

Cost-of-Goods

Solid-phase Scale-up

Projections

- PSP market (US)
 - Orphan indication (prevalence ~6.5 per 100,000)
 - 60 mg daily dose
 - Need ~150 kilograms (at launch)
 - ~500 kilograms per annum (at peak sales)

Solid-Phase Manufacturing

- Existing solid-phase synthesis (10 kg batch size):
 - 3 x 3.3 kg synthesis, pool crude peptide, HPLC purify, batch lyophilization
 - "Sufficient" for product launch for orphan indication
- Would require 10-15 batches per year
- Within existing capacity of CMO at single site
- Challenge: to get to 500 kg/annum to support peak sales (3-4 years post-approval) as well as follow-on product approval in other indications (like AD)

Need to rapidly bridge to additional solidphase capacity (second supplier) or explore liquid-phase synthesis

Cost: Solid-Phase Synthesis

Relative cost

Cost-Scale Considerations

Solid-Phase

- 0.15-0.2 relative cost
- Solution-Phase
 - Cost of initial development
 - Impurity profile
 - 0.035-0.05 relative cost
 - Dramatic reduction in cost (3- to 6-fold)

Davunetide: Solution-Phase Strategy

Condensation Segments and Building Blocks:

Solution-Phase Considerations

- Minimize Racemization/Epimerization Impurities by
 - Synthesize dipeptide building blocks from Boc-,
 Z- or Fmoc-protected single amino acids
 - Isolate and purify resulting condensation segments
 - Segment condensation only with di- and tripeptides containing proline or pseudoproline at the C-terminus

Synthetic Scheme I

HPLC analysis: Purity profile

Solution-Phase Conclusions

- Yield better than anticipated
- Revised relative-cost: 0.01-0.02
- Process still needs optimization

Lessons Learned

- Important to integrate manufacturing plans into
 - Sales and marketing
 - Target population change from AD to PSP
 - 1.2 mil patients versus 70,000
 - Clinical Development
 - Dose change from 5 mg to 60 mg
 - Significant increase (12-fold)

Acknowledgements and Thanks

- Bachem (Torrance, CA USA)
- Corden Pharma Switzerland
- CMC advisors
 - William (Bill) Bennett
 - Randy Lane (Cato)
- Former colleagues at Allon Therapeutics
 - Daniela Nenciu
 - Catherine Campbell

Questions?

bruce.morimoto@celerion.com