JMP Start Biostatisticians' Quality Check on Analytical Results

Feng, C., Li, X., Wang, N., Brejda, J. Celerion, Lincoln, NE, USA

INTRODUCTION

The quality of summary and statistical results must be verified by biostatisticians prior to interpretation. JMP[®] can be used to verify summary and statistical results and save the results as Quality Control (QC) documentation. In addition, it has a userfriendly interface and powerful data visualization tools.

METHODS

JMP 10 and JMP Pro 11 are evaluated for generating non-model based descriptive statistics and model based statistical comparisons. Results are compared to original results from SAS[®] Enterprise Guide 5.1 (SAS EG). The advantages and disadvantages that JMP brings to the QC process will also be evaluated.

1. Descriptive Statistics

There are three efficient and convenient methods for descriptive summary statistics using either JMP 10 or JMP Pro 11, including "Summary", "Tabulate", and "Distribution".

Figure 1. Descriptive statistics using the "Tables" menu and "Tabulate" function

Figure 2. Descriptive summary statistics for a hypothetical pharmacokinetic (PK) parameter by PROC MEANS in SAS EG

	Parameter 1								
Deuticinent	Treature	Treatment Treatment							
Participant	Ireatment	Ireatment	Ireatment						
ID	A	В	C						
1	994	2180	867						
2	1560	2170							
3	909	1850	592						
4	2070	2830	863						
5	2010	1880	604						
6	1960	2150	613						
7	1800	1910	591						
8	959	1550	492						
9	1860	3110	1000						
10	1480	2080	480						
11	2150	2490	719						
N	11	11	10						
AM	1616	2202	682.6						
SD	470.31	454.29	175.27						
ACV	29.1	20.6	25.7						
Med	1805	2154	608.4						
Min	909	1550	480						
Max	2150	3110	1000						
GM	1544	2162	663.6						
GCV	33.9	20.1	25.2						

JMP produces descriptive statistics very efficiently with a user-friendly interactive interface. All variable names, available statistics, plots, alpha levels, and tests are available for selection. Without typing or memorizing SAS codes, summary statistics, distributional histograms, box plots, mean tests can be quickly generated to QC against original results. The point-and-click, drag-and-drop methods, and editable data table enable JMP to save some data manipulation steps. However, GM and GCV cannot be directly produced by JMP, as well as in SAS EG PROC MEANS. Natural log transformed parameter and backtransformation are needed.

2. Data Visualization

The "Analyze" menu and "Distribution" function also provides box plots, stem and leaf plots, and normal quartile plots which can be used to examine the assumption of the underlying distribution for a parameter of interest as PROC UNIVARIATE in SAS. In addition, graphics can be produced to visualize the distribution of data from the Graph menu.

3. QC documentation

The summary results can be saved into a MS Word document, PDF file, or a data table as QC documentation. By right-clicking the summary results table, users can select the option "Make Into Data Table". Alternatively, it is possible to click the "Save as" option in the "File" menu.

Figure 3. Distribution of log transformed parameter

4. Model Based Statistics

Statistical comparisons among treatments are usually performed on PK parameters in early phase clinical studies. In the example below, treatments B and C (test), measured in Period 2 are compared against treatment A (reference) administered in Period 1 in a fixed sequence design. To account for correlation between the repeated measurements on each participant and possibility for unequal treatment variance, an unstructured variance-covariance structure is specified. The SAS EG codes are shown as in Figure 4.

Figure 4. SAS EG codes for the statistical analysis in a mixed model

Proc	Mix	ed	dat	a=	to	ta	l;	
cla	ass	Suk	ojec	ct	Tr	ea	tm	lei
mod	del	lnp	bara	nm1	=	Т	re	a
rep	peat	ed	Tre	eat	me	nt	/	
est	cima	te	"B	VS	•	Α"	Τ	'r
est	cima	te	"С	VS	•	Α"	Τ	'r
lsr	nean	s 1	l'rea	ntm	en	t	/	С
lsr	nean	s 1	rea	ntm	en	t	/	С
run;								

Figure 5. Selection of a mixed model analysis for generating model based statistics in JMP

Figure 6. Comparison results from JMP

Estimat	tes							
TREAT	Estimate	Std Error	DF	t Ratio	Prob> t	Lower 909	% Upper 90	%
A	7.3421542	0.09930963	10	73.93	<.0001*	7.162159	4 7.522149	1
В	7.6788234	0.05999718	10	127.99	<.0001*	7.570080	8 7.787566	0
С	6.4995227	0.07307828	10.287	88.94	<.0001*	6.367445	7 6.631599	8
Quantile =	1,83671		compa	130113				
² All Pa	irwise Dr	rrerences						
TREAT	-TREAT	Difference	Std Erro	or D	F t Ratio	Prob> t	Lower 90%	Upper 90%
A	В	-0.33667	0.081411	6 8.847	9 -4.14	0.0026*	-0.48620	-0.18714
A	С	0.84263	0.105884	2 8.847	9 7.96	<.0001*	0.64815	1.03711

Figure 7. Comparison results from SAS EG

					Estim	nates							
	Label	Estimate	Standard Error 0.08141 0.1059		DF	t Val	Value Pr		Alpha	L	ower	Upper	
	B vs. A	0.3367			10 4.14 0.00 10.2 -7.96 <.00		0.0020	020 0.1		.1891	0.4842		
	C vs. A	-0.8426					<.0001 0.		1 -1.0342		-0.6511		
				Least	Squa	res M	eans	 S					
Effect	Dosage Regimen		Estimate	Standard Erro		rror	DF	t Valu	alue Pr >		Alpha	a Lower	Uppe
TREAT	A		7.3422		0.0	9931	10	73.9	3 <.0	001	0.0	5 7.1209	7.563
TREAT	В		7.6788		0.0	6000	10	127.9	99 <.0	001	0.0	5 7.5451	7.812
TREAT	С		6.4995		0.0	7308	10.3	88.9	94 <.0	001	0.0	6.3373	6.661
TREAT	A		7.3422		0.0	9931	10	73.9	93 <.0	001	0.1	1 7.1622	7.522
TREAT	В		7.6788		0.0	6000	10	127.9	99 <.0	001	0.1	1 7.5701	7.787
TREAT	С		6.4995		0.0	7308	10.3	88.9	4 <.0	001	0.1	1 6.3674	6.631

ent; itment / s ddfm=kr; subject = Subject type = un; reatment -1 1 0 / cl alpha=0.1 e; reatment -1 0 1 / cl alpha=0.1 e; cl alpha=0.05; cl alpha=0.10;

RESULTS AND CONCLUSION

eri

Applied Translational

τ.el ΄

Least squares means, standard errors and associated confidence intervals (CIs) are identical between the two software packages (Figures 6 and 7).

nn

Medicine

- With JMP it is not possible to write the estimate statements needed to calculate the desired treatment differences. Therefore, an all-means-comparison procedure using "Student's t" was used to calculate the mean differences and associated CIs. This provides no control over how the difference is calculated. Thus, in this example, the sign on the difference and CIs is the opposite of that generated using the SAS estimate statements.
- The inability to write estimate statements would prevent the use of JMP Pro 11 for the assessment of steady state.
- JMP Pro 11 has a "mixed models" option to model repeated measures Analysis of Variance (ANOVA), whereas other versions of JMP do not. Although several variance-covariance structures are available in JMP Pro 11, the selection is limited. If the desired statistical analysis is beyond the capabilities of JMP Pro 11, the analysis can be submitted to SAS for more complex analyses.
- The Kenward-Roger's adjustment for the denominator degrees-of-freedom is the default method.
- Alpha level is defaulted to 0.05. The Alpha level can be changed 0.1 for the whole analysis, but it cannot be specified for just a specific set of comparisons.
- The interactive user-friendly interface is very efficient. In addition, powerful graphing tools can be used for data exploration.