Prediction Accuracy of Allometric Approaches for Macromolecules: Application for Biosimilar Development

Background & Purpose

In the development of biosimilar compounds the objective is to demonstrate a high degree of similarity to a reference biologic. Establishing similar pharmacokinetic properties between two compounds is vital prior to confirmation of similar clinical safety and efficacy.

Interspecies scaling of animal pharmacokinetics (PK) to human can potentially improve selection of biosimilar candidates prior to conducting human trials.

Historically, reports evaluating prediction accuracy of interspecies scaling methods measured prediction success as the number of compounds within a 2-fold threshold. A 2fold threshold may be too liberal for application to biosimilar development as scaling animal PK to human in this case calls for more precise estimation to improve confidence in terms of PK similarity prior to proceeding to clinical development.

The purpose of this study is to identify the most accurate allometric-type interspecies clearance (CL) scaling approach for use in guiding biosimilar development.

Methods

Literature reports evaluating prediction accuracy of interspecies scaling for CL of macromolecules was reviewed. Omitted were reports that included:

- methods that considered adjustments for physico-chemical properties
- > methods that considered adjustments for in-vitro metabolism data and/or protein binding
- reports using < 5 compounds</p>
- Prediction accuracy of oral CL (since all currently available biologics are marketed only in parenteral form)

Prediction accuracy was performed for scaling methods in **Table 1** using:

- Absolute average fold-error (AAFE) was used to assess the prediction success across a group of compounds where AAFE = $10[\Sigma | \log fold-error/n |]$
- Proportion of observations (i.e. compounds) where the prediction accuracy fell within the range 0.7-1.3 fold-error.

Offman E & Edginton AN

School of Pharmacy, University of Waterloo, Ontario, Canada

Table 1: Methods for the prediction of human clearance Interspecies Method (reference) Formula Simple Allometry $\log y = \log a + (b) \log * W$ ≥3 Species (Mordenti 1991 *Pharm Res* 8(11):1351-1359) Maximum Lifespan Potential (MLP) Correction CL x MLP (Boxenbaum 1984 *Drug Metab Rev* 15(5&6):1071-1121) CL x BW Brain Weight (BW) Correction (Boxenbaum 1984 Drug Metab Rev 15(5&6):1071-1121) When 0.55<b<0.7 use simple allometry; 0.71 Rule of Exponents (ROE) (Mahmood 1996 *Xenobiotica* 26: 887-895) use BW Species-Invariant Time Techniques y-axis = concentration/(Dose/W): Kallynochrons X-2 (Elementary Dedrick) (Boxenbaum 1984 Drug Metab Rev 15(5&6):1071-1121) Apolysichrons y-axis = concentration/(Dose/W^c) x-axis = time/W^{c-b} (Complex Dedrick) (Boxenbaum 1984 Drug Metab Rev 15(5&6):1071-1121) "Simplified" Allometry Single Species Fixed Exponent CL_{human}=CL_{animal} (W_{human}/W_{animal})^b (Ling et al. 2009 *J Clin Pharmacol* 49: 1382-402) Two-Species Allometric Techniques Two-species fixed coefficient with optimized or fixed $CL_{human} = a_{two-species} (W_{human})^{b}$ Exponent (Tang 2007 Drug Metab Dispos. 35 1886-1893) Results AAFE values and the proportion of compounds within the range > Of the methods reviewed, traditional simple allometry with a rule of exponents performed inconsistently with some compared \succ The proportion where the prediction accuracy was within the of compounds tested to as high as 100 %.

Discussion

- Most literature reports of single-species interspecies scaling a compounds in the monoclonal antibody class
- Monkeys were most frequently cited as the species employed
- Fixed exponents for simplified allometric approaches of CL rar
- Simplified allometric approaches with fixed exponents typical compounds within the range of 0.7-1.3.
- \blacktriangleright Exponents values ≥ 0.8 and ≤ 0.9 tended to result in lower AAFE within the tighter acceptance range of 0.7-1.3

		Table 2: Comparison of inte	rspecies scaling a	pproaches for clearance			
	Notes Use ≥50-fold weight range for species	Reference	Therapeutic Classification	Interspecies Scaling Approach	Number (N) of Compounds	AAFE	Number (N) within 0.7-1.3 fold-error
	Correct observed animal clearance prior to	Mordonti et al. 1001		Simple allomatry a	5	1 16	5
	plotting in simple allometry	Pharm Res 8:1351-9		Simple allometry "	3	1.10	5
			Various therapeutic proteins				
		Mahmood 2009	Various therapeutic proteins	Simple allometry ^a	6	2.05	2
<b<0.99 b≥1<="" mlp;="" td="" use=""><td>Prediction error may not be acceptable when</td><td>J Pharm Sci 98: 2472-93</td><td></td><td>Maximum Lifespan Potential (MLP)^b</td><td>6</td><td>3</td><td>1</td></b<0.99>	Prediction error may not be acceptable when	J Pharm Sci 98: 2472-93		Maximum Lifespan Potential (MLP) ^b	6	3	1
	b<0.5 or >1.3; MLP not recommended;			Brain weight (BW) ^c	6	4.6	1
	macromolecules; use BW when b≥1 (Mahmood			Single species mouse fixed exponent 0.75	6	1.77	1
	2009 J Pharm Sci 98: 3850-3861)			Single species mouse, fixed exponent 0.75	5	1.77	1
				Single species rat, fixed exponent 0.75	5	1.77	
ixis = time/W ^{1-b}	b and c are the exponents derived from ≥3	Mahmood 2009 <i>Haemophilia</i> 15: 1109-17	Coagulation factors; Tissue-	Simple allometry ^a	5	1.25	5
	species using simple allometry for CL and V		type plasminogen activators	2-Species Rat-Dog	5	1.40	3
		Dong et al. 2011 <i>Clin Pharmacokinet</i> 45: 1013-34	Monoclonal antibody (mAb)	Single species Monkey, fixed exponent 0.75	10	1.56	4
		Ling et al. 2009 J Clin Pharmacol 49: 1382-402	mAb	Single species Monkey, fixed exponent 0.75	13	1.54	3
				Single species Monkey, fixed exponent 0.80	13	1.38	8
				Single species Monkey, fixed exponent 0.85	13	1.26	11
				Single species Monkey, fixed exponent 0.90	13	1.18	11
ge of 0.7-1.3 are presented in Table 2				Single species Monkey, fixed exponent 0.95	13	1.23	11
minimum of 3 species with or without the				Single species Monkey, Dedrick, fixed exponent 0.8	6	1.36	4
risons resulting in >2-told-error range of 0.7.1.2 varied from as low as $16.\%$				Single species Monkey, Dedrick, fixed exponent 0.85	6	1.29	5
Talige of 0.7-1	L.5 Valleu II Olli as IOW as 10 %			Single species Monkey, Dedrick, fixed exponent 0.90	6	1.24	4
		Oitate et al. 2011 Drug Metab PK in press	mAb soluble target mAb	Single species Monkey, Dedrick, fixed exponent 0.79	6	1.55	2
			membrane-bound target	Single species Monkey, Dedrick, fixed exponent 0.96	6	1.45	3
pproaches eva	aluated prediction accuracy of	Deng et al. 2011	mAb	Simple allometry ^a	11	1.91	1
		<i>MAbs</i> 3: 61-6		Rule of Exponents	8	1.64	0
				Single species Monkey, fixed exponent 0.85	13	1.18	11
in simplified	allometric approaches	^a SA= simple allometry with \geq 3 species not includi	ng human; ^b MLP= Clearance x	Maximum Life-Span Potential; ^c BW= Clearance x Brain Wei	ght		
15CU 110111 0.7							
Ily resulted in a high proportion of		Conclusions					
Es and a highe	er proportion of compounds	For macromolecules, a	nd particularly	v monoclonal antibodies, er	nploying	singl	e-species
		monkey simplified all	ometric appro	aches with a fixea exponent	<i>c of 0.85</i>	o may	pe more

UNIVERSITY OF WATERLOO

appropriate than traditional allometric approaches in predicting human CL.