

Incorporating Early Assessments of Cardiovascular and CNS Safety into Early Clinical Studies

Bruce H Morimoto, PhD Dec 8, 2015

Objectives of Early Clinical Research

- 1. Establish safety
 - Understanding the maximum tolerated dose or maximum feasible dose in human
 - Translation of nonclinical to clinical observations
 - Unexpected safety observations
- 2. Understand pharmacokinetics (dose-exposure)
- **3.** Explore potential for efficacy
 - Clinical outcome measures
 - Biomarkers (target engagement, mechanism-of-action)

CNS Safety Assessment

Why Monitor CNS Safety?

- Early decision-making
- Critical for tolerability profile and appropriateness of patient populations
- Product differentiation

CNS Side-effects from Non-CNS Drugs

Examples:

- Cardiovascular
 - Beta-blockers for hypertension can result in insomnia, depression, nightmares
 - ACE inhibitors: dizziness, drowsiness, light headedness
- Respiratory
 - Anti-histamines. non-sedating do not cross the BBB
- Anti-viral
 - Non-nucleoside reverse transcriptase inhibitors, like efavirenz (Sustiva®), rilpivirine (Edurant®), can result in mood changes, anxiety, dizziness, sleep disturbance (insomnia, nightmares), and even psychosis
- Immune modulators
- Metabolic disease

Unwanted CNS Activity

- On-target, wrong tissue
 - Anti-histamines
 - Sedating: can cross BBB
 - Non-sedating: can't cross BBB

Off-target

- Neurotransmitter receptors (dopamine, serotonin, GABA and acetylcholine)
- Efanirenz (NNRTI) interacts with 5-HT_{2A/C} receptors, serotonin & dopamine reuptake, monoamine transporter, and GABA_A receptors

Polypharmacy. Potential for Synergism

Alone the drugs had a minimal effect, but in combination the negative effect on reaction times was equivalent to having a blood-alcohol level of 0.1%.

Cambridge Cognition (Computerized Tests)

Clinical Trial Information System (CTIS) Profile

From Cambridge Cognition©

Validity and Sensitivity

	Sensitivity to Cognitive Impairment	Sensitivity to Cognitive Enhancement	Validity
Spatial Working Memory (SWM)	Tyrosine depletion in healthy subjects (d=0.42) (Harmer et al., 2001).	Methylphenidate in healthy subjects (d=1.51) (Elliot et al., 1997).	Owen et al., 1990; Manes et al., 2002; Owen et al., 1996
Paired Associates Learning (PAL)	Scopolamine in healthy Subjects (d=1.12) (Rusted & Warburton, 1988). Rosiglitazone (no placebo) in diabetes (d=0.69) (Ryan et al., 2006).	Phenserine in patients with Alzheimer's disease (d=0.46) (Greig et al., 2005).	Owen et al., 2002; Swainson et al., 2001; de Rover et al., 2011
Reaction time (RTI)	Clonidine in healthy subjects (d=1.52) (Jakala et al., 1999).	Caffeine in healthy volunteers (d=0.44) (Attwood et al.,2007).	Robbins, 2002

Published data show that drugs can improve or impair performance in these tests

From Cambridge Cognition©

Sensitivity of Outcome Measure

Effect size's greater than 0.8 are considered to be "large" and would be expected to be clinically significant, and require serious evaluation by the clinical study team.

**Cohen (1988), Kraemer and Kupfer (2006)

From Cambridge Cognition©

Key Properties of CTIS Profile

- Summary
 - Three tests included in battery covering a wide range of cognitive domains
 - Takes a little over 20 minutes to complete
 - Can be used repeatedly (especially when test sessions are well spaced out)
 - Change with age is well documented
 - Test performance correlates with real life cognitive performance
 - Tests performance can be improved or impaired by drug treatment
 - Can detect clinical significant sized effects as well as sensitive to more subtle changes
 - Effects on peripheral mechanisms have been shown to influence test performance

Cardiovascular Assessments

The Evolution of Cardiac Safety Testing

Cases of Torsades de Pointes

Annual number of spontaneous reports of Torsade de Pointes received by the US FDA Adverse Event Reporting System, Stockbridge et al. Drug Safety 2013;36:167-182

Current Regulatory Guidance (Nonclinical)

- ICH S7A (Safety Pharmacology)
 - Cardiovascular system
 - Core battery: blood pressure, heart rate, ECG
 - Follow-up: cardiac output, ventricular contractility, vascular resistance
- ICH S7B (QT prolongation)
 - Ikr (hERG) assay
 - In vivo (telemetry) QT assessment
 - Chemical/pharmacological class
 - Integrative risk assessment

Current Clinical Cardiac Safety Guidance

ICH E14 (QT/QTc prolongation and proarrhythmic potential)

- Specifies Thorough QT/QTc study
 - Threshold for regulatory concern: 5 ms change in QTc
 - Typically done in healthy subjects
 - Positive control (often moxifloxacin)
- E14 Questions and Answers (2008)
 - Provided clarifications
 - Positive control to establish assay sensitivity (lower bound of one-sided 95% CI must be above 0 ms)
 - Who should read ECGs (must be blinded, cardiologist over-read acceptable)

Current Debate

- Does the TQT truly predict a compound's proarrhythmia potential?
- There have been tremendous advancements in both preclinical and early clinical monitoring of arrhythmia potential since 2005. How does this:
 - Change proarrhythmia evaluation pre-clinically and/or clinically?
 - Change the need for a TQT?
- What has been the impact of ICH E14 and S7B on drug development? Is it worth the cost?
- What does a positive TQT really mean?

Relationship of QT Prolongation and Human Risk

From: Morimoto and Fox (2011) In: *Principles and Practice of Pharmaceutical Medicine* (*Edwards, Fox and Stonier,* ed.) 3rd ed. Wiley-Blackwell

Is there an Alternative to Thorough QT Studies?

Increase Nonclinical Testing

- Comprehensive In vitro Proarrhythmia Assay (CiPA) Initiative
 - Ion channels
 - Perform comprehensive tests (hERG plus 3 to 6 additional cardiac channels)
 - Stem cell-derived human cardiomyocytes
 - In silico modeling
- Result: update ICH S7B

Early Clinical Cardiac Safety Evaluation

- Proposal:
 - Include intense ECG monitoring to early Single Ascending Dose (SAD) and Multi Ascending Dose (MAD) studies
 - Pool data from different dose levels to evaluate concentration response relationship
 - Typically during SAD and MAD studies the highest doses are given allowing for better concentration response modeling

Early Clinical Cardiac Safety Testing

- Consortium for Innovation and Quality in Pharmaceutical Development/Cardiac Safety Research Consortium (IQ/CSRC)
 - Look at six marketed drugs, 5 positive QT signal and 1 negative control
 - Two doses: 10-12 ms and 15-20 ms
 - Ondansetron, dofetilide, quinine, dolasetron, moxifloxacin
 - Levocetirizine (negative control)
 - SAD-like study
- QT assessment criteria: The upper bound of the two-sided 90% confidence interval (CI) of the projected placebo-corrected delta QTcF is above 10 ms at the observed peak plasma level of the drug
- Sensitivity and specificity of measuring QT prolongation
- Concern over potential false negatives (regulators) and false positives (sponsor)

IQ-CSRC Study

- 3 period, randomized, placebo-controlled study
- Incomplete block design used
 - Each study drug administered to 9 subjects and placebo to 6 (total n=20)
- Continuous 12-lead ECGs with replicate ECGs extracted
- Exposure response analysis performed
 - Evaluate relationship between plasma concentration and placebo corrected, change-from-baseline QTc (ΔΔQTc)
- "QT positive" if the UB of the 2-sided 90% CI of the predicted placebo-corrected \triangle QTcF is above 10 ms at the observed geometric mean C_{max} of the lower dose of the studied drugs

IQ-CSRC: Pharmacokinetics and QT Data

Darpo et al. (2015) Clin Pharmacol Ther 97, 326-335

IQ-CSRC Study: Exposure-response Results

Implications of IQ-CSRC Study

- No positive control in SAD
 - Reassurance against false negatives
 - Risk is small when exposure-response analysis is applied and offset by wide range of plasma concentrations
- Quality test metrics
 - HR stability within time points
 - Reproducible QT/RR curvature
 - Within and between subject variability of QT
 - Time course of QT adaptation to changes in HR
- Study was SAD-like, not exactly like a dose-escalation study
- Group sizes were larger than "typical" SAD

Future Directions

- Need further replication of the IQ-CSRC study
- Pharmacokinetics will drive study design
 - Pronounced accumulation on multi-dosing?
 - Sufficiently high plasma concentration of parent and metabolites?
- Could TQT waiver be obtained?

References

- Darpo et al. (2015) Implications of the IQ-CSRC prospective study: time to revise ICH E14. Drug Saf 38, 773-780
- Darpo et al. (2015) Results from the IQ-CSRC prospective study support replacement of the thorough QT study by QT assessment in the early clinical phase. *Clin Pharmacol Ther* 97, 326-335
- Darpo et al. (2014) The IQ-CSRC prospective clinical Phase 1 study: "Can early QT assessment using exposure-response analysis replace the thorough QT study?" Ann Noninvasive Electrocardiol 19, 70-81
- Cavero & Holzgrefe (2015) CiPA: ongoing testing, future qualification procedures, and pending issues. J Pharmcol Toxicol Methods 76, 27-37

Questions? bruce.morimoto@celerion.com