
Figure 4: Representation of the Multidimensional Aspect of Non-linear 
Mixed-effects Modeling: QT Prolongation at Cmax Versus the Model 
Predicted Parameters Emax and the IC50/Cmax Ratio

In this particular analysis, the PK and PD were linked through a sigmoidal model and the plasma 
concentrations of I were sufficient to explain the drug-induced QT prolongation. 

Case Study 3: 
In a clinical study where patients were randomly assigned to 3 treatment arms, 10 mg Drug X, 
15 mg Drug X and placebo, 2 efficacy response markers were assessed after 4 weeks and 
8 weeks on treatment. Only 13% of the patients consented to provide blood samples for PK 
assessment. However, sparse PK samplings from about 20 other studies for this compound 
provided enough data to develop an adequate population model to simulate complete PK 
profiles. With simulated PK profiles, exposure parameters (Cmax and AUC) for all patients 
were completed and incorporated into the statistical model fitting to examine the relationship 
of efficacy response to PK exposure. Without simulated PK parameters, association of PK 
exposure with efficacy response would not have been significant. Treatment comparisons 
only showed positive response in the 10 mg arm compared to placebo. When simulated PK 
parameters were included in the statistical model fitting, the association between exposure 
parameters and efficacy response was significant, suggesting increasing efficacy with 
increasing PK exposure. Treatment comparisons not only showed favorable response for active 
arms, it also showed favorable response of 15 mg treatment arm over 10 mg treatment arm.

CONCLUSION   
The 3 case studies illustrated why traditional inferential statistics or standard non-compartmental 
analysis are not always adequate to fully explore, explain and identify the true nature of observed 
variability. M&S provides options to further investigate.

Although M&S can be beneficial, great attention must be placed on the limitations and 
confidence levels of simulations. Effective use of M&S within confidence bounds can create 
value for sponsors and patients in drug development.

Modeling and simulation is a powerful tool in drug development when used appropriately. 
Expertise in both pharmacological sciences and statistics is required to deliver high quality 
results that effectively provide directions to advance research.

ObjECTIVE
The use of mathematical models to describe and predict pharmacokinetic (PK) and 
pharmacodynamic (PD ) pharmacological responses to pharmaceutical agents and medical 
devices is a relatively new and exciting area of research and constitutes the foundation of 
model-based drug development. Modeling is the quantitative summarization of the data, 
prior knowledge and assumptions to learn more about the drug. Models are built using drug 
concentration data, clinical endpoints, biomarker data, and other available PD information. 
Simulation is taking the model and the model parameters and then varying the inputs. Modeling 
and simulation (M&S) involves knowledge of pharmacologic systems, statistical analysis, 
scientific creativity, and the pharmacological imagination to ask “what if”.

During early clinical development, clinical studies are short and are rich with systemic drug 
levels, clinical chemistry information, and intense subject observations. These rich data sets 
provide an excellent basis for development of models that describe pharmacologic responses. 
These models can then be used to simulate PK profiles and to predict pharmacological 
responses in order to optimize and accelerate drug development. These models can also be 
used in conjunction with the sparse data obtained in later stages of development programs. In 
either case the role of M&S in drug development can be a supportive or it can be a key tool. 

Here we present 3 case studies as examples of how M&S has helped in the drug development 
process.  Case Study 1 presents the use of a mixed-effects model to describe the PK and 
predict different dosage regimens of a combination product, when a non-compartmental 
analysis (NCA) was not appropriate. In Case Study 2, the model developed in Case Study 1 is 
taken a step further to show how a non-linear mixed effects model can be used to reconcile 
inconclusive results from inferential statistical analysis performed in 2 thorough QT (TQT) 
studies. Case Study 3 presents how the PK model developed in Case Study 1 was used for the 
analysis of sparse data obtained from late stage studies (maximum a posteriori [MAP]-Bayesian 
analysis) and how the fitted PK exposure parameters were utilized as covariates in the analysis 
of efficacy data.

METhOdS
Identify Problem: What question needs to be answered? What problem needs to be solved? 
Identify the problem allows for a clearer approach to reviewing the data and defining an initial 
model. 

Review Data: It is important to review the available concentration, PK, PD, biomarker, and 
demographic data, in order to define the intended use of the model.  Is the data clean, accurate 
and unbiased? Does the raw data contain the appropriate information to support a PK and/or 
PK/PD model? A solid understanding of the raw data will help in defining the need and direction 
of the model. 

Define Model: Answer the questions: What is the intended use of the model? Will the model 
be used for descriptive or predictive purposes; where descriptive models are applied to the 
population at hand and predictive models built with one population and applied to other 
populations, which did not provide input in the model building? Will the model describe the data 
or a system; an empirical model versus a mechanistic model?  Defining an initial model gives a 
solid foundation in the every evolving model development process.

Develop Model: What is the structural model? How will the population parameters and their 
error models be defined? What overall residual error models will be considered? Will covariates 
be utilized? If so, how will they be incorporated to the model (additively, proportionally, 
multiplicatively, or as a saturable covariate? Developing a model is an iterative process, where 
the data dictates the path to be followed.

Evaluate Model: How will models be evaluated and compared? Does the model reasonably 
predict the observed data? What goodness-of-fit methods will be employed, graphical or 
metric-like criteria? How will the model be validated, with internal data or external data? 

Once a model is built, it can be used in different ways:

•	To	predict	the	exposure	resulting	from	different	dosing	regimens	for	future	clinical	use,	as	
shown in Case Study 1

•	Be	revised	by	adding	new	information	coming	from	additional	studies
•	Be	linked	to	a	PD	model,	as	shown	in	Case	Study	2
•	To	analyze	sparse	data	from	late	phase	studies	using	MAP-Bayesian	analysis	in	which	the	

values of the model parameters (fixed and random) are being used as constraints to fit the 
sparse data, as shown in Case Study 3
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RESULTS OVERVIEw
Case Study 1: 
The recent approval of a combination drug (AI; A+I) where M&S was employed is a good 
example of the successful use of M&S in the support of drug development. The first assumption 
for using NCA is that a drug has linear and time-independent PK. When this assumption is 
not fulfilled, predictions based on NCA models are erroneous. In this combination compound, 
Drug I inhibits the metabolism of the active drug (A) to its metabolite (M) to increase Drug A’s 
bioavailability and half-life, resulting in non-linear PK. Thus, the use of NCA was not appropriate 
and M&S was utilized to describe the PK. A population mixed-effects model (Figure 1) was 
built using data from 3 studies in order to predict plasma concentrations with various dose 
combinations of the 2 drugs and various dosing regimens. 

Figure 1: Outline of the Non-linear Pk Model

The PK of all 3 analytes (A, M and I) in plasma following single and multiple doses of the 
combination drug were well described by the population PK model developed with this meta-
analysis (Figure 2). The model was also able to successfully predict the plasma PK of these 
3 analytes from studies not utilized in the model development.

Figure 2: Example of an Individual Fit For the Active Compound (A), Its 
Metabolite (M) and the Inhibitor (I)

Case Study 2: 
M&S can help reconcile inconclusive results obtained with the standard inferential statistical 
analysis performed on TQT data (referred to as central tendency analysis, noninferiority 
testing, or intersection-union testing). TQT studies are more often becoming part of Phase I 
development programs. During the development process of Drug AI presented in the first case 
study, 2 TQT studies were performed, due to a change in drug regimen during Phase III. Based 
on the central tendency analysis performed for each study, doses 2 to 3 times lower than the 
original Phase I dose resulted in the same mild QT prolongation observed with the original 
dose. In order to reconcile these results, non-linear mixed-effects PK/PD modeling, using  the 
PK model previously developed, was utilized to allow for pooling of the 2 TQT studies, which 
had different endpoints (QTcF and QTcI) and different baseline correction methods (average and 
timematched), and successfully modeled the QT observations.

While the inferential statistical analysis performed on the TQT data had a null hypothesis that 
the one-sided 95% confidence interval (CI) for the difference between the baseline corrected 
placebo and the treatment would be greater than 10 milliseconds (msec) for at least one time 
point (Figure 3A), the non-linear mixed-effects approach looked at the relationship between the 
PD response (in this case QT measurements) and the AI drug concentrations, the sensitivity of 
individuals towards the drug, the available covariates (eg. age, sex, etc.), the diurnal variation 
within an individual, the inter-subject variability, etc. The final structural PD model included fitted 
individual correction for heart rate, a baseline model and diurnal variations.

Figure 3: Illustration of Inferential Statistics Approach (A) Versus Non-
linear Mixed-Effects Modeling (b)

Furthermore, using the non-linear mixed-effects approach, the data can be viewed from a 
different perspective than using just probabilistic statistics. Figure 4 represents a couple of 
the mixed-effects model derived parameters (Emax and IC50) found in the model versus the 
individual data presented in Figure 3B. When portrayed in this perspective, the different sources 
of variability in the observed data are able to be seen in more detail and allow for a better 
understanding of the drug effect.
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