

Hemolyzed Sample Evaluation

Curtis Sheldon Associate Director, Bioanalytical Development December 2, 2010

Hemolyzed Sample Evaluation

- Brief Description
- Industry Perspective
- Hemolyzed Sample Preparation
- Validation of Samples
- Primary Causes of Failures
- Sample Analysis Verification
- Example Data
- Conclusions
- Acknowledgement

Description of Hemolyzed Samples

Hemolysis:

- The destruction of red blood cells which leads to the release of hemoglobin from within the red blood cells into the blood plasma
- Causes
 - 1. May occur *in vivo* as a result of pathology or drug effect
 - 2. May occur during the collection of blood
 - 3. May occur during the processing of collected blood into plasma/serum

Industry Perspective

- Hemolysis has been discussed for many years
- Recently, FDA conference white papers and draft EMEA guidelines are calling for the assessment of hemolyzed samples during validations
- Testing should occur as part of the matrix effect evaluation

Hemolyzed Sample Preparation

- Sample preparation questions:
 - 1. Typically, add small percentage of blood to plasma samples
 - Does this represent "hemolyzed samples"
 - Is there a better way to prepare hemolzed samples?
 - 2. Sample Design
 - Multiple lots (matrix effect) appears to be preferred method
 - Single lots (stability evaluation)
 - **3.** Condition of blood
 - 1. Fresh blood Allows blood cells to lyse in presence of drug
 - 2. Frozen lysed blood provides immediate and consistent access of blood to blood cell contents worst case scenario

Hemolyzed Sample Acceptance Criteria

- Hemolyzed Sample Acceptance Criteria
 - 1. Quantitation using non-hemolyzed standards
 - Does not test only the impact of hemolysis
 - This is the industry accepted criteria for most validation evaluations
 - 2. Matrix factor
 - What result would indicate a failure
 - Results may have no well defined acceptance criteria
 - 3. Quantitatively compare to control
 - Compare to sample without blood
 - Scientifically sound

Validation of Hemolyzed Samples

Current Process

- Fresh or frozen blood may be added to plasma mandatory 24-hour freeze cycle prior to analyzing
- 2. Consultation with sponsors, other CROs led to using 2% (v/v) blood added to plasma/serum
- 3. Hemolyzed samples analyzed at a minimum of 3 individual/pool lots at low and high QC concentration
- Acceptance criteria:
 - 2/3 of samples within +/- 15% of theoretical conc.
 - Inter-lot % bias and % CV less that 15%

Primary Causes of Failures

- 1. Matrix effect Adjust method to eliminate effect
 - Extraction Enhance sample clean-up using an SPE method instead of protein precipitation
 - Chromatography run a gradient instead of isocratic
 - LBS add in extraction or dilution
- 2. Stability Change Conditions
 - Long-term Storage at -80 C instead of -20 C
 - Collection or processing conditions use ice water bath instead of ambient temperature
- 3. Recovery Adjust extraction conditions to improve recovery
 - Change pH, aqueous to organic ratio, SPE conditions, etc.

Primary Causes of Failures

- 4. Selectivity
 - Improve sample clean-up to remove interference
 - Dilute out interference
 - Separate interference chromatographically
- 5. Endogenous Content
 - High levels in red blood cells
 - Little chance to correct, adjust LLOQ above endogenous level
- Fixing the method is primary focus of hemolysis testing during Method Development

Sample Analysis Verification - Failure

- If the failure cannot be overcome:
 - Test range of percentages
 - Typically test 1, 2, and 5% (v/v)
 - Document Samples that are hemolyzed
 - All samples are noted as hemolyzed
 - Document percentage of hemolysis
 - Report samples that may be affected by high levels of hemolysis

Sample Analysis Verification - Failure

- Use color chart to evaluate samples:
 - 1% and 2% hemolysis can be differentiated
 - 3% 5% difficult to differentiate
 - Above 5% very dark red cannot be differentiated

	Control QC	Hemolyzed QC	Hemolyzed QC		
		MeOH	MeOH + TCA		
	1161440	256911	1196435		
	1085956	296718	1226431		
	NV	266695	1223119		
Mean	1123698	273441	1215328		
% CV	4.8	7.6	1.4		
% Control		24	108		
n =	2	3	3		
MeOH = Precipitation method using only methanol					
MeOH + TCA = Precipitation using TCA and methanol					

- Methanol precipitation 100% recovery plasma
- Methanol precipitation (MeOH) 76% loss of recovery in hemolyzed samples
- Acidified methanol (MeOH + TCA) 108% recovery in Hemolyzed Samples

Hemolyzed EDTA Plasma						
	MeOH		TCA + MeOH			
	QC	REC	QC	REC		
Mean	0	1132	2780	2539		
C.V. %	na	7.1	13.5	7.5		
% Recovery		0		109		
QC = Quality Control with compound spiked prior to extraction						
REC = Blank plasma sample spiked with analyte after extration						

- EDTA plasma
 - No recovery in hemolyzed plasma samples with methanol only extraction
 - 109% recovery in hemolyzed plasma samples using methanol + TCA extraction

Hemolyzed Heparin Plasma					
	MeOH		TCA + MeOH		
	QC	REC	QC	REC	
Mean	1276	1264	3036	3064	
C.V. %	7.0	1.3	6.2	17.8	
% Recovery		101		99	
QC = Quality Control with compound spiked prior to extraction					
REC = Blank plasma sample spiked with analyte after extration					

- Heparin plasma
 - 101% recovery from hemolyzed samples with methanol only extraction
 - 99% recovery from hemolyzed samples with methanol + TCA Extraction

Percent	Low	High
Hemolyzed	% Bias	% Bias
0	2	-1
0.5	0	2
1	1	-14
2	-13	-16
5	-22	-12

- Initial failure at 2% base on +/- 15% acceptance criteria
- Evaluated range of percentages
- 1% passes and 2% fails
- Samples reported with greater than 1% hemolysis would be deemed questionable

Hemolyzed Sample – Conclusions

- Evaluate hemolyzed samples early in method development to avoid re-development
- If a failure occurs in hemolyzed samples, evaluate reason for failure to determine best course of action
 - If endogenous compound is being tested, resolution of issues raised by hemolysis may be difficult
- Eliminate subjectivity as much as possible
- Well-trained scientists is key to hemolysis evaluations
- SOPs that:
 - 1. Specify how to prepare and test samples
 - 2. How to address hemolyzed clinical/pre-clinical samples

Acknowledgements

- Simon Wood, Celerion, Zurich
- Tara Baldwin, Celerion, Lincoln
- Erik Pearson, Celerion, Lincoln
- Corey Ohnmacht, Celerion, Lincoln

