

Quantitative LC-MS/MS Analysis of Glucagon

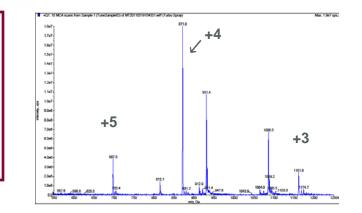
Veniamin Lapko, Ph.D June 21, 2011

Agenda

- Comparison with small molecule LC-MS/MS
- LC-MS/MS sensitivity of peptides detection
- Stability: neat vs. matrix solutions
- Method: extraction & LC-MS/MS
- Reference material
- Conclusions

Examples for Improvement of Peptides MS/MS Sensitivity

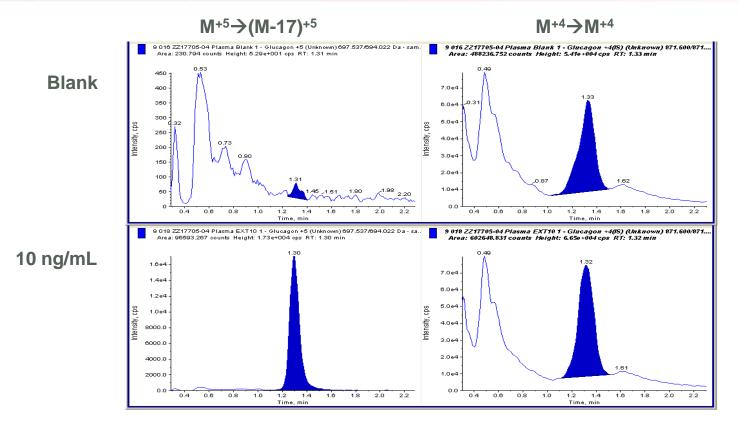
- Negative ESI MS/MS with loss of water
- β-amyloid peptides, 100 pg/mL
- Sequence specific fragmentation
- cleavage of peptide bonds involving Pro residues
- Chemical modification
- Cys residues derivatization with iodoacetamide (terlipressin) increases MRM response by ~ 5-fold


Glucagon MS/MS

NH₂-His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-

Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-

Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-


Met-Asn-Thr-COOH

- Multiple-charged species in ESI mass spectra
- Unique highly efficient fragmentation of M⁺⁵ ions with loss of ammonia
 - Other peptides with N-terminal His share this fragmentation feature, including glucagon analogs missing Thr⁵ and Thr⁷

Selectivity/Efficiency of Glucagon MRM

Selectivity: distinct difference between blank and spiked samples **MRM Efficiency**: relative increase of the analyte response in spiked samples vs blanks for both transitions is approximately the same [peak area counts: 103,000 (M⁺⁵ MRM) vs. 114,000 (M⁺⁴ MRM)]

Glucagon Stability (Neat Solutions)

- Soluble in acidic (pH < 3) and basic (pH >9.5) solutions
- Chemically stable: decomposition of Trp, Met oxidation, deamidation of Asn/Gln, or peptide bonds hydrolysis only significant in relatively harsh conditions
- Prevention of adsorption: coating of polypropylene tubes with BSA
 - Glucagon solution below 50 µg/mL: addition of "keeper" peptides
 - Choice of "keeper" peptide/compound: lack of interferences, compatibility with method/analyte
- Extracted samples: no adsorptions (96 hours, 5°C)

Glucagon Stability (Plasma)

- Proteolysis rate is matrix lot-dependent
- In some lots of human plasma, aprotinin alone (250 KIU/mL) does not provide sufficient glucagon stability
- Cocktail of inhibitors was developed to enhance glucagon stability in human plasma and in whole blood
- Proteolysis rates of (des-Thr⁵)- and (des-Thr⁷)-glucagon variants are similar to glucagon degradation rates

Enhancement of Glucagon Stability in Plasma

Human: Short-term stability (17 hours) of Test QC samples on an ice water bath

Inhibitor	Aprotinin 250 KIU/mL		Cocktail of inhibitors	
	Control QC	STS QC	Control QC	STS QC
	5910	2180	6030	5830
	5930	2090	6050	5800
	5570	2160	6010	6050
Mean	5800	2140	6030	5890
% CV	3.5	2.2	0.3	2.3
Stability (% of Control)		36.9		97.7

Rat: Acidification of plasma is also required to provide sample integrity along with addition of protease inhibitor cocktail

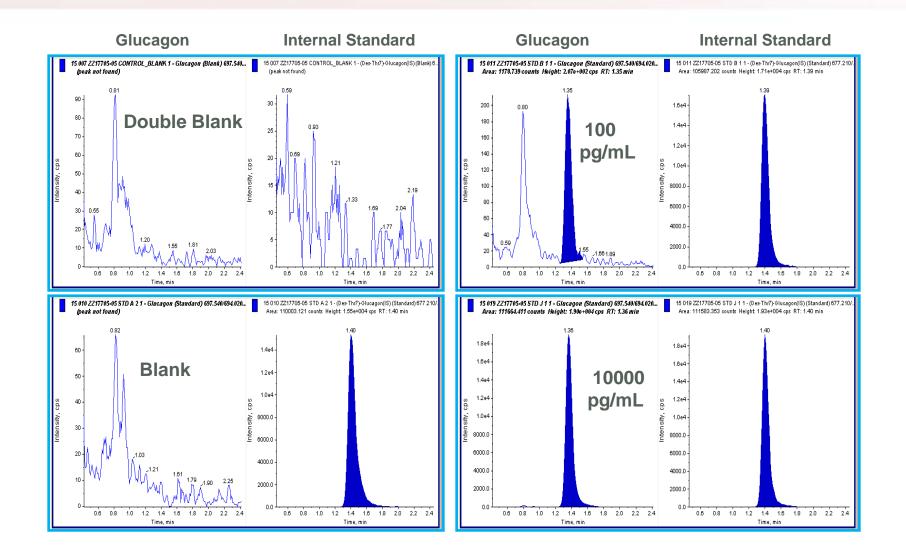
Glucagon Method: Extraction

- Ion-exchange 96-well plates
- Sample incubation with detergent & acetonitrile
 - Minimize protein binding
 - Improve accuracy of quantitation in matrix from multiple donors
- SPE washes with several organic solvents
 - Ensure consistency of the analyte/IS recovery
 - Lack of matrix effect
- Internal standard: (des-Thr⁷)-glucagon

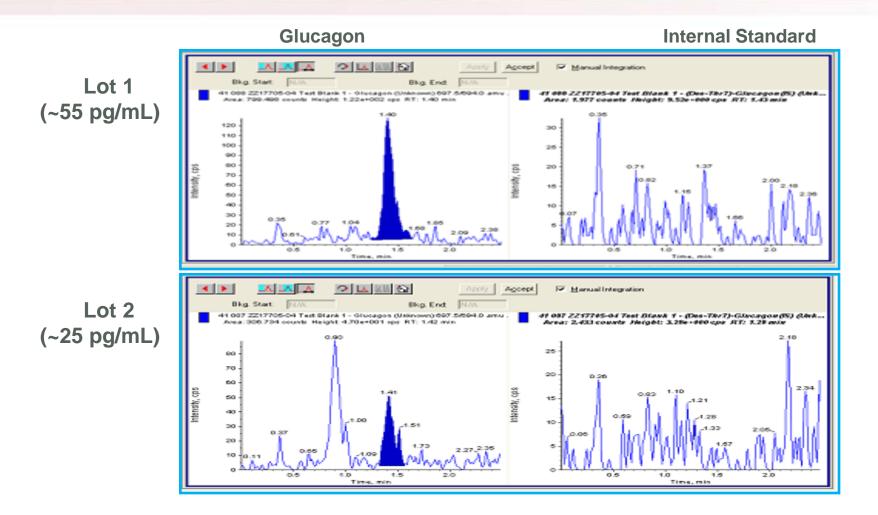
Glucagon Method: LC-MS/MS

- Parallel-column system (Agilent Zorbax 300SB-C18, 3.5 µm, 50x2.1 mm)
 - Isocratic elution on column 1 (analysis)
 - Gradient regeneration on column 2
- Advantages:
 - Stability of LC-MS/MS system (ratio & response)
 - Lack of carry-over
 - Run time < 4 minutes</p>

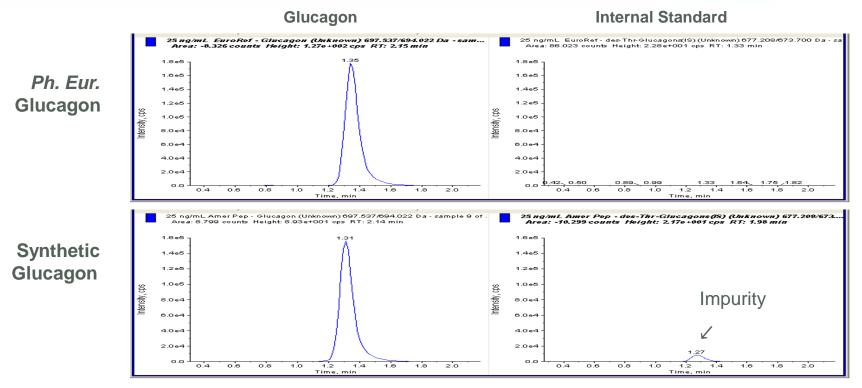
Glucagon (Human Plasma) Method Parameters


- Analytical range:
- Dilution integrity:
- Sample volume:
- Sample collection and handling stability:
- Short-term stability in matrix:

100-10,000 pg/mL up to 25,000 pg/mL 0.250 mL


2 hours (5°C) 14 hours (5°C)

Glucagon Extracted Samples



Evaluation of Glucagon Endogenous Level

Glucagon Reference Standards

 Concentrations of glucagon as European Pharmacopeia Reference Standard and glucagon from commercially available Eli Lilly Glucagon Emergency Kit matched well

 Some synthetic preparations may contain a significant amount of peptide impurities not shown in Certificate of Analysis

LC-MS/MS vs Immunochemical Methods (Selectivity)

- Glucagon (RIA vs LC-MS/MS)
 - Low concentration quality control samples (140 pg/mL, RIA method) had no detectable intact glucagon in LC-MS/MS method
- 13,14-dihydro-15-keto Prostaglandin F_{2α} (ELISA vs. LC-MS/MS)
 - Analytical samples: up to 200-fold difference in concentrations between methods

Conclusions

- Some challenges in LC-MS/MS with peptides similar to those with small molecules
- Glucagon MRM transition with loss of ammonia provides an easy LC-MS/MS solution
- Several inhibitors are required to ensure glucagon stability in human plasma
- LC-MS/MS glucagon method advantages
 - More selective than immunochemical
 - Lack of matrix effect
 - Large linear range

Acknowledgements

- Paul Brown
- Chris Kafonek
- Alan Dzerk
- Brendon Retke
- Corey Ohnmacht
- Ridha Nachi
- Sarah Roby
- Patrick Miller
- Curtis Sheldon

