

Enriching Phase I Studies for Better Decision Making

J. Fred Pritchard, Ph.D. September 15, 2011

Overview of Presentation

- What is driving the need for innovation in early clinical research?
- What are considered "game-changing" applications of emerging technology?
- How can these enriching technologies help answer troubling problems encountered in Phase I research programs?
- What are some examples?
- Summary

Clinical Development is Evolving

Source: William Blair & Company, (Bain and Company) Covance Investors Overview June 16, 2010

Importance of Proof-of-Concept Studies

Defines Product Value For the First Time

The Pressure is On for Proof-of-Concept!

What is a better decision?

- One made earlier
- With greater confidence
- More efficiently

Better data, faster, cheaper

Game Changing Innovation

Game Changing Innovation in Medical History

- 600 BC Sushruta (India) reported ants attracted to urine of diabetics
- 1555 Józef Struś first measured blood pressure (by placing increasing weights on the skin over an artery until the pulse no longer lifted the weight)
- 1895 Wilhem Roentgen discovered x-rays → imaging biomarkers
- 1896 Henri Becquerel discovered radioactivity → radiodiagnostics
- 1901 Willem Einthoven invented the first ECG apparatus

New Technology Drives Innovation So Many New Tools in So Little Time

Troublesome Problems Encountered in Early Clinical Research

Positive or equivocal signals in preclinical cardiovascular safety assessment

High definition digital ECG collection and analysis

Drugs with potentially poor absorption or unknown hepatic first-pass metabolism

Active metabolites, speciesunique metabolites, or disproportionate human vs. tox species metabolite(s).

Establishing if drug gets to site of action

Use of microtracers with Accelerator Mass Spectrometry

Efficacy/Mechanism biomarkers

An Early ECG Device

The Hybrid Phase I/ ECG Core Laboratory

- · Phase I focus only
- Single vendor with unified functionality
- Single database
- Single PM, DM, stats

BLUETOOTH HOLTER

- Instant ECG review
- Computer generated date/time stamp
- Preconfigured demographics
- Single device to acquire safety ECGs during Holter recording
- 1000 sample/second acquisition
- Up to 48 hours ECG collection

HIGHLY AUTOMATED ECG PROCESSING

- Automated, optimized ECG
 extractions from Holter
- Normal ECGs measured automatically providing lower variabiliy=better data
- Cardioloigst only review approximately 10-20%
- · Faster data turnaround

Holter Monitor

- Developed for Mercury space program
- Evolved far beyond early devices
- Now continuous 12 lead ECG acquisition
- Most TQT studies in ECG Warehouse are Holter

Comparing ECG Acquisition Modalities

	Stand alone 12 Lead	Standard Holter	Telemetry System	Blue-tooth Holter
Continuous ECG Collection	NO	YES	YES	YES
Retrospective data collection	NO	YES	YES	YES
View Safety ECG	Yes	NO	YES	YES
Data capture out of range	NO	YES	NO	YES
Transportable	YES	YES	NO	YES

Digital ECG Reading Enables Overlay of Lead Signals for Better Accuracy in Measurement of Intervals

ECG Extraction: Artifacts Are a Problem

ECG Extraction: Find a Period of Stable Heart Rate and Reduced Noise

Accurate QTc require a stable preceding heart rate

Antares Optimal ECG Extraction: Decreases Variability

Searching for best extraction, noise and HR stability criteria...

F Badilini, Vaglio, Sarapa, A.N.E 2009;14(Supp1):22-29

ECG Measurement Modalities

- Semi automated: standard process in most labs
 - aka "manually adjudicated"
 - Computer performs measurements
 - Every ECG confirmed by cardiologist
- Fully automated: "Black Box"
 - Machine read only
 - Consistent in normal ECG recordings
 - Recording characteristics can cause inaccurate measurements
 - Moxifloxacin produces abnormal ECGs
- Highly automated
 - Cardiologist reviews only questionable ECGs
 - Decreases variability

Algorithm Evolution

Hnatkova K, Gang Y, Batchvarov VN, Malik M. Pacing Clin Electrophysiol 2006 Nov; 29 (11): 1277-84.

Traditional vs. the Hybrid ECG Core Lab

Traditional ECG Core Lab	Hybrid ECG Core Lab
Two contracts (clinic+core lab)	One contract
Two study teams (clinic+core lab)	One study team
Large infrastructure supports late stage trials	Supports only Phase I clinics
Little to no Core lab visibility on clinic conduct	Direct visibility of clinic conduct
Cardiologist reviews all ECGs	Cardiologist reviews 10-20% of ECGs
ECG turnaround 4-6 weeks after LPLV	ECG turnaround 2 weeks after LPLV

Celerion Hybrid Phase I/ECG Core Lab

- Optimal client interactions
- Data
 - Better
 - Faster
 - Cheaper
 - ~50% decrease in ECG costs

Accelerator Mass Spectrometry

Measures isotope ratios – can detect ultra low levels of ¹⁴C radioactivity

Technology used in carbon dating of antiquities

First biological application in 1989

Applications in Pharmaceutical Research (since 1998)

Preclinical: Special bioanalysis (proteins, monoclonal antibodies, interfering RNA);
 Phase 0 (subtherapeutic dose) clinical studies
 Early Clinical: MIST (Metabolism in Safety Testing) solution, metabolic profiling, absolute

Clinical: Bioanalysis of high potency drugs

Isotopic Tracers: Determination of Absolute Bioavailability (F)

Example: Fexofenadine

- Fexofenadine HCI is a histamine H1receptor antagonist used to treat allergies
- It is a PgP and an OATP substrate
- Fexofenadine is not substantially metabolized
- It has been on the market for over 12 years
- Although fexofenadine is a well established drug, it has never previously been administered intravenously

Study Design

Acknowledgement:

This research study was funded by the European Commission grant number LSHG-CT-2005-018672

Total 14C vs. Parent IV Dose

Confirms fexofenadine undergoes very limited metabolism

Absolute Oral Bioavailability of Fexofenadine

Mean oral absolute bioavailability 28%

PK Parameters for Fexofenadine

Parameter	Microtracer data (%CV, n= 6)	Literature data
t _{1/2} (h)	10 (27)	14
CL (L/h)	17 (23)	4.2*
V (L)	245 (17)	85
F(%)	28 (26)	? 10*

* Minimum based on excretion of unchanged drug in urine

When AMS Provides Enriched Data?

Poor or variable bioavailability

- Is absolute bioavailability too low?
- Is it influenced by formulation?
- Role of gut absorption/metabolism vs. hepatic metabolism and efflux

Different metabolic profiles between species used in toxicology

Which species reflect human metabolic profile qualitatively and quantitatively?

Exposure in tissues

- Cerebral spinal fluid (CSF) exposure for CNS-acting drugs?
- Systemic exposure for dermal, inhaled, optical, etc. drug delivery

High potency drugs

Ultra-low concentration measurements

Biomarkers and Decision-Making

Human Biomarker : a measure of biochemical or physiological function, anatomical structure, genetic characteristics or pharmacological activity primarily used to identify or predict changes in the human body brought on by disease or therapy

Biomarkers in Drug Development: A Handbook of Practice, Application, and Strategy Ed: Michael R. Bleavins, Claudio Carini, Mallé Jurima-Romet, Ramin Rahbari; John Wiley & Sons.

How will the biomarker(s) advance the drug's development?

Primary purpose of biomarkers is to enable better decisions

Plethora of Biomarkers for Diabetes

SAD Study of a Novel DPP-4 Inhibitor in Mild Diabetic Patients

Sequence	Patients	Treatment Periods		
		P1	P2	P3
1	N = 5	PLA	75 mg	200 mg
2	N = 5	25 mg	PLA	200 mg
3	N = 5	25 mg	75 mg	PLA

Sequence	Patients	Treatment Periods		
		P′1	P′2	P'3
4 5 6	N = 5 N = 5 N = 5	PLA 50 mg 50 mg	100 mg PLA 100 mg	300 mg 300 mg PLA

Results of SAD Study in Mild Diabetic Patients: Early Evidence of Efficacy

Summary

Opportunities

- New technologies enrich early clinical pharmacology studies by providing better data, faster and cheaper.
- Regulators are open to new and creative approaches
- Challenges
 - Technologies must be effectively deployed and properly validated
 - Study designs and logistics more complex

Q & A

