
DEFINE.xml OVERVIEW
Well formed data contains all information needed to understand study results, but that information is
typically not easily accessible to end users; combining the data with xml format data documentation
gives end-users a data and documentation package that is complete, user friendly and ready to submit
to the FDA. Define.xml data documentation has internal and external links that allow end users to quickly
find the level of information they need, from source CRF references to variable lists to code lists and
comments associated with key content.

TWO-STEP DATA-DRIVEN DEFINE.xml
CREATION USING PROC TEmPlATE
A two-step data-driven process is used to create the define.xml document. The first step is the production
of six SAS © format define data sets by mining the data for unique information. The six define data sets
describe the data at many levels and are optimized for use as inputs in downstream processing. The next
step is integration of the SAS® define data into an xml formatted document through a robust approach
driven by SAS© PROC TEmPlATE. Sorted define data sets are restructured and transformed into a
group of tagsets that comprise the define document. The benefit of this approach is the concise and
powerful application of PROC TEmPlATE that presents the define data through a series of define events
triggered by the six levels of metadata. The PROC TEmPlATE code is simple to alter and run, allowing
more time to focus on the data itself.

DEFINE DATA GENERATION USING DATA mINING
Simple iterative looping through each submission domain is used to mine the data for the information
used to create the define.xml. The data are mined for all unique content at increasingly specific levels;
that information is output as six SAS data sets. There is some flexibility in how the datasets are formed,
but it is important to use variable characteristics that are consistent with the xsl stylesheet (define-
0-0.xsl) used to support define.xml presentation. Supplemental metadata are used to provide a limited
amount of additional content. Examples of content added or adjusted through supplemental metadata
are variable and value origins, derivation comments, pre-printed CRF code lists, and code list names.
That supplemental metadata is typically available from the electronic data mapping specifications used
to drive the SDTm, ADam or custom mapping. With data characteristics driven by the data, the risk of
a non-representative define.xml is reduced. Code list names and attributes from the variable (unique
result values by variable) and value (unique results within a variable and within a variable value) levels are
used to trigger generation of code lists, building in consistency and allowing the programmer to easily
control what lists are presented.

Using PROC TEMPLATE TO COnvERT sAs DATA TO DEfinE.xML
lucius A. Reinbolt, Steven Kirby, matthew Wiedel, Aleksandra Stein, Vanessa Huang and Nancy Wang

Celerion

VARIABlE lEVEl DEFINE DATA

DEFINE DATA TO DEFINE.xml WITH PROC TEmPlATE
moving from the six define data sets to the define.xml can be usefully broken into four parts facilitated
by the use of PROC TEmPlATE: 1) Read in tagset names and data values , 2) Format and print tagset
data, 3) Trigger the tagset events, and 4) Format and output printed tagset datasets as define.xml

READ IN TAGSET NAmES AND DATA VAlUES

CODE lIST lEVEl DEFINE DATA

OUTPUT PRINTED TAGSET DATASETS AS DEFINE.xml

Code list
References

Variable
Attributes

Blankcrf

TitleProtocol

Domains
Structure
and Keys

xpt location

Origins and
Comments

Metadata
Description

Value Level
Codes

Variable
Level Codes

Origins and
comments

Code List
References

Value
Attributes

Outside
References

proc template; define tagset allvars; default_event="all"; Indent=3;
define event leaf; set $tablename value; end;
define event data; set $data_values[name] value; end;

define event row; start:
unset $data_values; break; finish:
break / if section ne "body";
do / if $tablename eq "Data Set WORK.STUDY"; trigger study; done; …
do / if $tablename eq "Data Set WORK.BOTTOM"; trigger bottom; done; end;

output_type="xml"; nobreakspace=" ";mapsub=%nrstr("/<;/>/&/");
map=%nrstr("<>&"); end;

<def:ValueListDef OID="DA.DATESTCD">
<ItemRef ItemOID="DA.DATESTCD.DADISNO" OrderNumber="1"
Mandatory="No" RoleCodeListOID="RoleCodeList"></ItemRef>
<ItemRef ItemOID="DA.DATESTCD.DARETNO" OrderNumber="2"
Mandatory="No" RoleCodeListOID="RoleCodeList"></ItemRef>
</def:ValueListDef>

define event vallevel;
put "<def:ValueListDef OID=""" $data_values["DATASET"] "."

$data_values["VARIABLE"] """>" nl /if
cmp('1',$data_values["ORDER"]); **uppercase here;
put "<ItemRef ItemOID=""" $data_values["DATASET"] "."

$data_values["VARIABLE"] "." $data_values["VALUENAME"] """ OrderNumber="""
$data_values["VALUEORDER"] """" nl;

put "Mandatory=""" $data_values["MANDATORY"] """
RoleCodeListOID=""RoleCodeList""></ItemRef>" nl;

put "</def:ValueListDef>" nl /if cmp('YES',$data_values["END"]);
end;

ACKNOWlEDGEmENTS
We want to thank Celerion for the support received for this work, and we want to express our gratitude
to the CDISC community for the wealth of public information on the application of data standards.

%macro printout(dset, variables, byvar);
data &dset.; retain &variables; set &dset.; run;
proc print noobs data=&dset.;
var &variables; by &byvar notsorted; run;

%mend printout;
ods markup tagset=allvars file="&outfold./define.xml";
%printout(study, FILEOID ORIGINATOR SOURCESYSTEM SOURCESYSTEMVERSION

STUDYOID STUDYNAME STUDYDESCRIPTION PROTOCOLNAME METADATAVERSION
METADATANAME METADATADES DEFINEVERSION STANDARDNAME
STANDARDVERSION); /… /
%printout(bottom, FILEOID);

The leaf event reads the tagset dataset during the trigger portion. The data event reads the variables
per tagset event.

FORmAT AND PRINT TAGSET (def:ValuelistDef tag)

The tagset format is precisely what is required by the xsl style sheet. The beginning and ending of the
main tagset have a ‘cmp’ portion at the end. to compute the beginning and end of the main ValuelistDef
tagset. “ORDER” and “END” are ordering variables that allow nesting to occur.

TAGSET PRINT ExAmPlE
There are linked levels of information in the define that correspond to each of the input define data sets.
Not all information available in the define.xml is presented using the stylesheet, but all information can
be viewed in native format by opening the file in WordPad or a similar application.

DEFINE.xml –VARIABlE lEVEl

Another set of macro calls shows the order and content within each tagset. For the define.xml to work
properly, it should be in a folder that contains all the documents, datasets it externally links, any external
graphics used for visual functionality, and the proper extensible xsl stylesheet and css cascading
stylesheet. It is trivial to adjust the colors and add a logo to the define.xml.

DEFINE.xml –DOmAIN lEVEl

The attribute fields are populated by the define datasets. These nested tagsets then are processed by
the extensible stylesheet to present the metadata in a readable form.

TRIGGER TAGSET EVENTS

DEFINE.xml lEVElS OF INFORmATION
XML format allows for multiple levels of information to be gracefully linked together. The Diagram below shows
the different levels of information. The data (and some supplementary metadata) are mined to generate six
SAS data sets that correspond with these levels of information. That information is then integrated into to
form the define.xml using PROC TEMPLATE.

This poster has been modified from the original version presented to adhere to Celerion brand guidelines.

