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Abstract 
In the strictly regulated environment of the pharmaceutical industry, a Contract Research Organization (CRO) 
provides a wide range of services including, but not limited to, “design of a protocol, selection or monitoring of 
investigations, evaluation of reports, and preparation of materials to be submitted to the Food and Drug 
Administration.” [FDA 21 CFR 312.3(b)]  With regulatory agencies’ recent endorsement of CDISC data submission 
standards, statistical programmers and statistical scientists now need a solid, functional understanding of data to be 
effective.  Academia, however, has not yet embraced a data-focused training of statisticians.  This paper examines 
the emerging discrepancy between the scientific knowledge students are equipped with and the focus on data 
required to work in the industry.  We also share our methods for enhancing communication and easing the transition 
between academia and industry. 
 
Introduction 
In response to regulatory agencies’ recent endorsement of CDISC data submission standards, the pharmaceutical 
industry is permeated with requests for data and documentation packages that conform to CDISC SDTM and ADaM 
standards.  Other industries are also increasingly formalizing data requirements. The presence of global data 
standards is relatively new, but the need for data that are easy to understand and utilize—whether referred to as 
“clean, analyzable data,” “user-friendly data,” or “robust data,”—is nothing new. With the strong trend towards formal 
data requirements, it is reasonable to investigate the background and skills needed to thrive in an environment where 
the science needs to be transparently supported by data that can be traced back to source collection records. The 
requisite skill set of statisticians in the industry is quickly expanding to include data savvy.  Production of data (and 
associated metadata) which conform to an appropriate structure and meet analysis needs requires a functional 
understanding of data and effective communication between statistical scientists and programmers.  Statistical 
instruction must impart—at a minimum—a working knowledge of analysis data, the capacity to choose an appropriate 
dataset structure, and a solid understanding of how to map data into a useful structure without affecting data validity.  
Academia has remained relative stable in training statisticians to think carefully about analysis without thought to how 
the data can best support it.  In particular, academic institutions have not yet embraced a data-focused educational 
model.   
 
This paper examines the emerging discrepancy between the scientific knowledge students are equipped with and the 
focus on data required to work in the industry.  We will begin with the diverging definitions/processes of “performing 
analyses” for statistical programmers and statistical scientists within the industry.  Leveraging these characterizations, 
we illustrate the successes of scientifically oriented higher education as well as the distress to industry caused by the 
dismal degree to which discussing data occurs in the typical university setting.  Specifically, we will discuss the Good 
(design and analysis), the Bad (data detective work), and the Ugly (dealing with data). Finally, we will mention our 
methods in enhancing communication and easing the transition between academia and industry.   
 
Analyzing Analysis 
Many CRO websites tout their bioanalytical services in terms of design and analysis. 

• “designing scientifically-sound and efficient clinical studies and analyzing and interpreting data from these 
studies”—Celerion  

• “adaptive trial design, program and protocol development”—i3  
• “Protocol development”, “analysis plans”, and “preparation of statistical reports”—Pharmastat  
• “Optimal clinical trial study designs to meet regulatory and promotional needs,” “Statistical analysis support,” 

and “Analysis plan development”—Ockham  
 
On the other hand, CROs also advertize rapidly available, analysis-ready data. 

• “deliver services that enable clients to get products to market faster” and “assist clients in making informed 
go/no-go decisions on compounds in development as early as possible”—Celerion  

• “faster, real-time access to clean clinical data” and “shorter development times and earlier visibility to clean, 
analyzable data”—Medidata  

 



Statistical scientists address the first set of analytical services: planning, performing, and presenting.  Their roles 
allow them to focus on the big picture—the analysis needed to answer a certain question and the substance of the 
data that needs to be available to support that analysis.  Biostatisticians, therefore, may define analysis as the 
statistical elements that happen prior to data collection or after obtaining clean, analyzable data.   
 
Statistical programmers, on the other hand, consist of a newer breed of statisticians who take primary responsibility 
for data preparation and report formatting, facilitating the statistical process.  Programmers tend to focus on the 
details: getting the data prepared for analysis and appropriately formatting data and statistical outputs.  Therefore, 
they perceive analysis as consisting of two parts—preparing the data for analysis and the analysis as defined by the 
statistical scientists.   
 
By current industry standards, performing statistical analyses would be impossible without both parties working with 
the same expectations for their data.  Examining the time spent on projects post-database lock, one finds that these 
overlapping tasks (data preparation and analysis) encompass the bulk of billable hours—the majority of these hours 
being spent on programming in roughly a three-to-one ratio.  Industry timelines, therefore, support the interpretation 
that data manipulation is essential to analysis.  Confusion about analysis needs at the data level require a 
biostatistician’s clarification and extend programming, ultimately delaying timelines.  Avoiding such delays requires 
data savvy scientists communicating with their programming support. 
 
Based on the core curriculum offered by statistics departments at universities nation-wide, however, we are forced to 
conclude that academia supports the constricted portrayal of statistical analysis limited to textbook-quality data.  
Given these incongruous definitions, recent students occasionally find themselves underprepared to function 
efficiently in an industry which requires statisticians to transform one set of data into safety reports, efficacy reports, 
integrated data, submission compliant data, analysis data, and more!  We therefore need to take a closer look at what 
higher education is doing right and where it could use a little help in helping students. 
 
Data Too Good to Be True 
Opening ten stats textbooks in the nearby university library, I found the same information on randomization, 
regression, power, and error rates as in the 2007 Pharmaceutical Statistics Using SAS®: A Practical Guide.  Granted, 
each work differed in organization and presentation, but all contained the appropriate information needed for 
understanding statistical designs and analyses, as mentioned above.   
 
The Good: Analysis and Reporting 
While adjusting to a company’s methods, software, and related specifications may be tricky, basic design and 
analysis are stable across studies and between companies.  This is hardly surprising; ANOVAS and T-test 
procedures are invariant to data from lions, tiger, bears, and chemical compounds.  Similarly, finding confidence 
intervals depends on underlying distributions, sample sizes, and desired levels of confidence, not on the subjects 
from which the data are taken.  Moreover, parallel studies and crossover designs apply equally well to fruit flies, 
racehorses, and Alzheimer patients.  Statistical design and analysis applications may vary by discipline but the tools 
taught in the classroom and classic textbooks are consistent.  Whether they studied statistics from a department 
emphasizing animal breeding and agriculture or arthritis and abdominal cancer, students absorb appropriate design 
and analytical methodologies in academia. 
 
In terms of teaching students to communicate, schools score favorably in this aspect as well.  Academic practice in 
explaining experimental designs, sampling schema, and interpretations adequately prepares incoming industry 
statisticians to customize company SAPs and protocols.  Cultural and language barriers notwithstanding, university 
coursework emphasizes the importance of reaching and reporting research conclusions.  The transition from freeform 
interpretations to standard tables, listings, and graphs nicely tied into report templates is generally graceful.  While 
verbal communication skills will vary, including the ability to talk with co-workers and clients, statistical scientists 
should be ready to write. 
 
Based solely on the design, analysis, and reporting aspects which CRO websites advertize, academic institutions 
produce students who may—with guidance and industry-specific enlightenment—fulfill the roles of pharmaceutical 
biostatisticians.  Most CRO websites, however, fail to mention that sometimes someone somewhere might make a 
mistake.  In particular, sometimes mistakes find their way into a statistical scientist’s dataset—a phenomenon that 
rarely occurs in statistical students’ data. 
 
The Bad: Data Detectives 
A closer look at the statistical library contents reveals that textbooks mainly contain textbook data: complete, 
balanced data presented neatly in rows and columns ready for analysis.  Class assignments tell the same tale of 
perfect, simulated data for homework.  Unlike many academic disciplines, the pharmaceutical industry is strictly 
regulated by the FDA who expects data to be 100% accurate.  Missing or unusual observations must be adequately 



explained—and academia is not relating this message.  Of course, universities and books mention here and there 
that a statistician may wish to remove an outlier from a dataset or work with the median rather than the mean to 
minimize its effects.  In the pharmaceutical industry, however, neither of these responses would be appropriate in 
most situations.  Instead, a biostatistician (programmer/data manager) would flag the dataset or patient information 
containing inexplicable or surprising information and do some detective work.  Prior to FDA submission, said 
statistician would need to discover whether or not the information was correct, then either track down accurate 
information for reporting or explain the results.  Pharmaceutical veterans perform this process routinely, but beginning 
biostatisticians are often ill-equipped for data-driven error detection and explanation.  Outliers, unbalanced data, and 
missing values are the tip of the iceberg for dealing with data.  Even clean data which are not analysis-ready may 
stump inexperienced statisticians. 
 
The Ugly: Dealing with Data 
Except in special cases with special relationships, university statistics departments offer courses in statistics.  Their 
curricula rarely cover courses in data beyond data-mining; as mentioned above, the data students do see are nearly 
out-of-this-world perfect.  We propose here a list of the top three astounding areas to which recent graduates did not 
receive enough exposure. 
 

1. Structuring Data.  Analysis data don’t happen by accident.  Clinical data, for example, is most efficiently 
collected using a horizontal structure, below.   
 

Patient Systolic 1 Diastolic 1 Systolic 2 Diastolic 2 Systolic 3 Diastolic 3 
001 118 76 117 76 110 71 
002 142 96 156 101 145 83 
003 135 80 137 82 129 76 

Horizontal Data Structure 
 
As per CDISC guidance for CDASH, SDTM, and ADaM, clinical data may be most effectively analyzed, 
reported, and warehoused using a vertical structure—and most often not a direct transposition.   
 

Patient Test Result 
001 Systolic 1 118 
002 Systolic 1 142 
003 Systolic 1 135 
001 Systolic 2 117 
002 Systolic 2 156 
003 Systolic 2 137 
001 Systolic 3 110 
002 Systolic 3 145 
003 Systolic 3 129 
001 Diastolic 1 76 
002 Diastolic 1 96 
003 Diastolic 1 80 
001 Diastolic 2 76 
002 Diastolic 2 101 
003 Diastolic 2 82 
001 Diastolic 3 71 
002 Diastolic 3 83 
003 Diastolic 3 76 

Vertical Data Structure 
 
Transformation tools such as PROC TRANSPOSE or PROC SQL, however, are not needed for analysis of 
classroom data and thus are not introduced in the classroom. 
 
Getting data into and out of a multivariate data structure is another incredibly common but overlooked 
obstacle in academic data structuring. 
 

2. Sorting Data.  Statistics student rarely explore data beyond summary statistics.  Therefore, even if they 
have heard of PROC SORT, a student will not be familiar with nuances of sorting with respect to numeric or 
character variables.  A thorough tutorial was given last year by Andrew Kuligowski.  For larger datasets, a 
simple sort will be insufficient and sorting must be done BY variables, perhaps with enhanced functionality 



such as NODUPKEY sorts.  Of course, there are also occasions when a subset of a dataset is desired and 
WHERE or IF statements are necessary. 
 
Similar issues arise for ranking data, say, for nonparametric analysis: educational examples focus on 
analysis and are small enough to rank by hand.  PROC RANK would eliminate manual imputations and their 
associated errors, especially under the stress of impending deadlines. 

 
2.5 Merging Data.  A sister issue to sorting is merging—which merits mention, but not a new number.  When 

each particular problem that appears in a semester-long course is accompanied by a specific simulated 
dataset, merging is never necessary.   
 
Merging datasets together or merging in specific variables requires indentifying key variables or specifying 
that data are unique at the merge level.  Using CDISC terminology, a statistician must know whether the 
datasets in question contain one entry per subject, one entry per event per subject, one entry per event per 
visit, etc.  David Franklin’s 2010 Tutorial enumerated popular merging methods ranging from a simple 
datastep MERGE with a BY option to merging with PEEK and POKE functions. 
 

3. Tracking Data.  In the pharmaceutical industry, the FDA requires completely documented data.  Following 
this trend, unregulated industries and academia are now knee deep in discussions of reproducible data.  
Outside of SAS—where leveraging the built-in functionality of data labels is trivial—labeling, formatting, and 
commenting on data (or, rather, lack thereof) has been resulting in irreproducible data.  Adding a variable 
LABEL; coding with PROC FORMAT or IF/THEN and ELSE statements; and documenting changes to data 
(sorting, categorizing, transforming, etc.) in comments or in the program header relieve much worry in terms 
of creating reproducible research, in the pharmaceutical industry and in other industries soon to follow. 

 
 
If you strip a statistical programmer of these core data concepts or ban a biostatistician from using these tools to 
describe and create analysis-ready data, no CRO would advertize “real-time client access” to data.  In addition, no 
CRO would be capable of keeping up with demands for rapid decision-making and drug-development data.  Thinking 
about data, talking about data, and dealing with data are essential elements of statistical analysis in the 
pharmaceutical world. 
 
C-ROck: A Case Study 
C-ROck is a young company with an old history and a nearby university, UNI.  For decades, many of C-ROck's 
statistical employees have originally been students in the Department of Statistics at UNI.  Unfortunately, C-ROck has 
been experiencing concerns with the growing discrepancy between its needs and the skills of UNI graduates.  
Coincidentally, several scientists at C-ROck decided to audit a statistical course at UNI as a refresher.  This helped 
the statistical team at C-ROck to identify particular areas of concern regarding statistical education at UNI with 
respect to pharmaceutical industry skills and simultaneously strengthen personal relationships between professors 
and professionals at the two locations.   
 
Subsequently, the instructor of the “refresher course” decided to teach a Pharmaceutical Statistics class and 
moreover invited several members of the C-ROck to be guest speakers during the course.  Both parties benefited 
from this semester: the students gained a real-world perspective and appreciation for the importance of data in the 
statistical world which are underemphasized in academia; C-ROck eventually gained new employees armed with 
statistical science and data savvy.  Additionally, previous C-ROck statistical programmers and the new hires 
collaborated in an increasingly rigorously regulated environment, inspiring innovative standard processes to efficiently 
process submission packages for CDISC SDTM and ADaM with Define.XML capabilities.  Finally, persons from both 
sides continued to enjoy perks of the partnership such as continuing education for biostatisticians who bring to the 
classroom a perspective of industry experience; availability of part-time and temporary statistical employees who fill a 
need and receive funding and experience in return; and, of course, extended networking opportunities and success 
stories. 
 
Conclusion 
Whether in SAS or any other software, a statistical student would be hard-pressed to receive data-as-collected and 
transmit data-as-analyzed without leveraging the above resources for dealing with data.  Nevertheless, academia has 
yet to embrace a data-driven statistical education model, resulting in repeated rough transitions into industries across 
disciplines.  While we would admire attempts to revolutionize higher education, we are not—at this point—advocating 
it.  Instead, we have presented our approach to smoothing the passage from student to professional, on the 
pharmaceutical end.   
 



Being aware of the data-driven nature of statistical analysis in industry and armed with the knowledge that analysis is 
the sole focus of academia, new hires weaknesses are now anticipated.  More effective training can be planned and 
teams structured to alleviate this situation, maximizing the efficiency of new hires and speeding their transition into 
data savvy scientists. 
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