

Leveraging Biomarkers in Early Clinical Drug Development for Metabolic Disease Therapies

Mallé Jurima-Romet, PhD August 31, 2011

Overview of Presentation

- What is driving the need for innovation in early clinical research?
- Are biomarkers new?
- Why include biomarkers in early drug development?
- What are some examples?
 - Type 2 Diabetes
 - Lysosomal Storage Diseases
- What are the challenges?
 - Novel Biomarkers
 - Analytical Issues
 - Complex Study Logistics
- Summary

Clinical Development is Evolving

Source: William Blair & Company, (Bain and Company) Covance Investors Overview June 16, 2010

Importance of Proof-of-Concept Studies

Defines Product Value For the First Time

The Pressure is On for Proof-of-Concept!

What is a Better Decision?

- One made earlier
- With greater confidence
- More efficiently

Better data, faster, cheaper

Q: Are Biomarkers New? A. Biomarkers Are Not New.

Sushruta (clinician in India, 600 B.C.) Recorded that urine of diabetic patients attracted ants

= Diagnostic biomarker for diabetes

Other Early Milestones in Biomarker Development

- 1555 Józef Struś first measured blood pressure
 (by placing increasing weights on the skin over an artery until the pulse no longer lifted the weight)
- 1895 Wilhelm Röntgen discovered x-rays
 → imaging biomarkers
- 1896 Henri Becquerel discovered radioactivity → radiodiagnostics
- **1901** Willem Einthoven invented the first ECG apparatus

An Early ECG Device

The Hybrid Phase I/ ECG Core Laboratory

- · Phase I focus only
- Single vendor with unified functionality
- Single database
- Single PM, DM, stats

BLUETOOTH HOLTER

- Instant ECG review
- Computer generated date/time stamp
- Preconfigured demographics
- Single device to acquire safety ECGs during Holter recording
- 1000 sample/second acquisition
- Up to 48 hours ECG collection

HIGHLY AUTOMATED ECG PROCESSING

- Automated, optimized ECG
 extractions from Holter
- Normal ECGs measured automatically providing lower variabiliy=better data
- Cardioloigst only review approximately 10-20%
- · Faster data turnaround

Modern Era of Biomarkers – New Technology Drives Innovation

1950s to present day

Biomarkers and Decision-Making

- Key question: How will the biomarker(s) advance the drug's development?
- Primary purpose of biomarkers is to enable better decisions

Diabetes

- Diabetes affects nearly 25.8 million people (8.3% of the population) in the U.S.
 - 18.8 million diagnosed
 - 7.0 undiagnosed
- > 35% of U.S. adults > 20 years have pre-diabetes
- > 50 of U.S. adults > 65 years have pre-diabetes
- Leading cause of kidney failure, nontraumatic limb amputations and new cases of blindness
- Major cause of heart disease and stroke
- 7th leading cause of death

Plethora of Biomarkers for Diabetes

Considerations in Evaluating a Candidate Biomarker

- Clinical relevance
 - Ideally, should be related to MoA of the drug and the clinical endpoint
- Sensitivity and specificity to treatment effects
 - Ability to detect the biomarker or change in biomarker in the target population
- Reliability
 - Ability to measure the biomarker analytically with accuracy, precision, robustness and reproducibility
- Practicality
 - Is the biomarker non-invasive? Is it suitable to implement in multi-site trials?
- Simplicity
 - Simpler is better for translating a biomarker from lab bench to bedside

SAD Study of a Novel DPP-4 Inhibitor in Mild Diabetic Patients

Sequence	Patients	Treatment Periods		
		P1	P2	P3
1	N = 5	PLA	75 mg	200 mg
2	N = 5	25 mg	PLA	200 mg
3	N = 5	25 mg	75 mg	PLA

Sequence	Patients	Treatment Periods		
		P′1	P′2	P'3
4 5 6	N = 5 N = 5 N = 5	PLA 50 mg 50 mg	100 mg PLA 100 mg	300 mg 300 mg PLA

Results of SAD Study in Mild Diabetic Patients: Early Evidence of Efficacy

SAD Study of Novel DPP-4 Inhibitor in Healthy Volunteers

High Inter-subject Variability in Postprandial GLP-1

Meal

GLP-1 Response to Meal is Different Between Healthy Volunteers and Type 2 Diabetics

Lysosomal Storage Diseases

- Rare inherited metabolic disorders that result from defects in lysosomal function
- Usually caused by the deficiency of a single enzyme involved in the metabolism of a lipid, glycoprotein or mucopolysaccharide, resulting in the excess accumulation of its substrate in the lysosomes
- Examples Fabry disease, Gaucher disease, Pompe disease

Fabry Disease

- X-Linked inborn error of metabolism
- Subnormal or absent activity of lysosomal hydrolase, α-galactosidase A (αGal A)
- Progressive globotriaosylceramide (GL-3) accumulation in tissues leading to end-organ impairment
- Most morbidity and mortality attributable to renal, neurologic and cardiac disease
- Therapies for Fabry Disease
 - Enzyme Replacement Therapy
 - Chaperone Therapy?

In Vitro Studies During Discovery Demonstrated α Gal A as a Mechanism of Action Biomarker

Enhancement of α Gal A in lymphoblasts from patients with Fabry disease

Ref: Fan et al., Nature Medicine 3: 112-115, 1999

PD Biomarker Incorporated into Phase I Clinical Development Program

Gaucher Disease

- Most common lysosomal storage disease
- Autosomal recessive inheritance
- Subnormal or absent activity of lysosomal acid β-glucocerebrosidase (GCase)
- Progressive accumulation of substrate glucocerebroside in tissues leading to end-organ impairment
- Most morbidity and mortality attributable to hepatosplenomegaly, bone and neurologic disease
- Therapies for Gaucher Disease
 - Enzyme Replacement Therapy
 - Miglustat (enzyme inhibitor that decreases production of substrate)
 - Chaperone Therapy?

GCase as PD Biomarker in Phase I MAD Study

GCase activity in white blood cells during repeated daily oral doses of AT2101 for 7 days followed by a 14-day wash-out period

DJ Palling et al., Am. College Med Genetics, Nashville, Tennessee, March 2007 (poster presentation)

Clinical Relevance of Biomarkers:

- If a biomarker is to be used to differentiate between healthy individuals and those with a disease, need to determine a priori the descriptive statistical parameters for the two populations
 - Mean, range, variance
 - Is there population overlap?
 - How does the population difference compare to the measurement error?
- May need to first conduct a survey study to collect data
- Determine appropriate sample size (based on statistical power to detect meaningful difference)

Normal Range and Variation of the Biomarker

- Example: Novel drug for treatment of a rare metabolic disease caused by an enzyme deficiency
 - Phase II study: Patients were "pretreated" for 2 weeks with the drug to determine if they were "responders". Only responders were to be enrolled in a 12-week open-label trial
 - Original definition of responder was "If baseline enzyme activity is less than 1% of normal, then Day -15 enzyme activity must be at least 2% of normal"
- Key Issue: Need to define "normal"
 - Measured enzyme activity in healthy subjects (N=21)
 - AVG = 22.8 nmol/mg protein
 - SD = 5.7, Range = 11.0 33.5
 - Cannot discern an increase from 1% to 2% of normal
 - Changed inclusion criteria based on X-fold increase from baseline for individual patient

Complex Sample Collection and Processing

Example – Phase IIa study – 14 tests, 7 labs

Challenges and Learnings

- Time to develop assay (translate from lab bench to clinic)
 - Assay through-put, sensitivity & specificity, reliability
- Defining normal baselines for novel assays
 - Can be readily done in early phase
- Complex sample collection and processing
 - Role of project management
 - Staff training (mock runs)
 - Barcode system to reduce errors, maintain chain of custody

Challenges and Learnings (...continued)

- High demands on data management and data analysis; quantity and speed
 - Integrated IT solutions
- Ethical issues (e.g. tissue banking, privacy, data integrity)
 - Issues must be recognized early and solutions developed early
- Evolving regulatory environment
 - Engage early with regulatory agencies

Summary

- Purpose of biomarkers is to enable better decisions
- Question to be answered should drive the technology used
- Understand biomarker variability and clinical relevance in study populations
- Recognize challenges and plan early

