Neutralizing Antibody Assays: To Be Cell Based or Ligand Binding, That's the Real Question!

P. Doytcheva, A. Wyrzucki, P. Brennecke and P. Struwe Celerion Switzerland AG, 8320 Fehraltorf, Switzerland

Introduction

Neutralizing antibodies (nAbs) against a therapeutic drug might have detrimental effects by abrogating the drug's functionality, or by posing a safety risk for patients if the therapeutic drug is similar to a non-redundant endogenous protein. In consequence, the reliable detection of nAbs is necessary for highly immunogenic therapeutics.

Regulatory bodies (FDA/EMA) are particularly keen on nAb assays respecting the drug's mode of action (MOA). Many drugs exert their function by binding to cell membrane components or specific receptors. A preferred method to assess nAbs on these cytoactive drugs is by functional cell-based assays (CBA). CBA methods, however, suffer from major limitations such as low assay robustness, low sensitivity, and low free drug tolerance. In such cases using a competitive ligand binding assay (CLB) instead might be a valuable alternative to a CBA. Figure 3: CLB setup in the (A) absence and (B) presence of nAbs

Results

Screening cutpoint with 1% false positives (Table 1) and sensitivity of a polyclonal anti-drug antibody used as the reference item (Table 2) were evaluated in both CBA and CLB setups.

Table 1: Screening cutpoint evaluation in CBA vs. CLB

	distribution	mean	SD	%CV	median	MADn
CBA	normal	40909.03	8698	21.261	39681.75	7043.09
CLB	not normal	14809.39	1569	10.5932	N/AP	N/AP

In the present study we developed and compared two different assay formats for the detection of nAbs against a humanized therapeutic antibody with an antibody-dependent cell-mediated cytotoxicity (ADCC) MOA in serum samples:

- A CBA using a commercial ADCC kit, with inhibition of ADCC effector cells` downstream luciferase gene activation as the nAbs readout
- An electrochemiluminescent immunoassay (ECLIA) CLB, with inhibition of antigen-drug binding as the nAbs readout

Here we present the challenges, solutions and special considerations regarding the development of CBA versus CLB nAb assays, and we compare the two assays side-by-side for the key parameters robustness and sensitivity.

Analytical Methods

The drug under investigation, a humanized therapeutic antibody, has an ADCC MOA, where it binds to cell surface antigens on target cells, followed by binding of immune effector cells (typically NK cells), which induce target cell apoptosis (Figure 1). ADCC is a desirable mechanism for killing cancer cells using antibody-based therapy. However, nAbs would prevent the antibody drug from binding to its antigens on target cells, and therefore prevent target cells apoptosis, leading to a reduced drug efficacy.

Figure 1: ADCC mechanism

cutpoint		oint cutpoint calculation		CF	
CBA	23297.0695	median (Ind) - 2.326 x MADn	38365.38	0.60724	
CLB	10788.985	CP = percentile (Ind, 0.01)	14503.75	0.74388	

 Table 2: Sensitivity evaluation in CBA vs. CLB

reference item (ng/mL)	CBA	CLB		
3200	16150.5	54.5		
1600	26750	282		
800	33114.5	2020		
400	39059.5	6011		
200	36477	9292.5		
100	30875	12428.5		
negative control (NC)	37909	13472.5		
	28663.5	15200		
correction factor (CF)	0.607242065	0.743875549		
run-specific cutpoint (rCP)	20212.81118	10664.38585		
concentration at rCP (ng/mL)	2586.79203	156.2536401		

Based on the lower sensitivity, the higher variability and the more complex CBA setup (additional PEG precipitation leading to loss of nAb signal), the CLB setup was chosen for further development and qualification. Qualification results are presented in Table 3.

 Table 3: CLB nAb qualification results

creening cut point				10788.9850			
correction factor				0.7439 by division		n	
inter-assay precision	at NC	0	ng/mL	14749	±	9.2	
mean RLU ± %cv	at LPC	200	ng/mL	9208	±	6.6	
	at MPC	400	ng/mL	4812	±	12.2	
	at HPC	800	ng/mL	1603	±	12.2	
		LP	C/rCP	0.8140	±	8.7	
intra-assay precision	at NC	0	ng/mL		11.1	_	
%cv	at LPC	200	ng/mL		7.4		
	at MPC	400	ng/mL		13.3	3	
	at HPC	800	ng/mL		6.2		
sensitivity (two runs)	conc at rCP		1	126.6	ing/m	L	
	estimated sensitivity			269 ng/mL			
selectivity	at LPC	200	ng/mL	10 of	10	and	pool
	at MPC	400	ng/mL	10 of	10	and	pool
	at HPC	800	ng/mL	10 of	10	and	pool
recovery	at LPC	200	ng/mL		107	,	
	at MPC	400	ng/mL		117		
	at HPC	800	ng/mL		107		
free drug tolerance	ce of LPC		0.46875 μg/mL				
	of HPC			3.75 μg/mL			

Analytical Challenges and Solutions

1. Free drug tolerance

<u>Problem:</u> Very low free drug tolerance and false positives were expected in both CBA and CLB setups because of sample free drug concentrations expected in the range of $3.5 - 10 \mu g/mL$.

<u>Solution:</u> Remove free drug from samples using a depletion procedure prior to nAb detection. The optimized free drug depletion procedure is presented in Figure 4.

<u>Result:</u> The effects of the procedure on the CBA and the CLB setups are presented in Figures 5 and 6, respectively.

Figure 4: Free drug depletion procedure prior to nAbs detection

Treat serum samples with 0.15 M Glycine-HCl pH 2.3 for 10 minutes to dissociate drug-nAb complexes					
Incubate for 1 hour with streptavidin paramagnetic particles pre-incubated with 2 μ g biotinylated reference item (anti-drug antibody) and resuspended in					
neutralization buffer					
Shortly centrifuge plates, use a 96-well magnetic stand to recover the supernatant from the streptavidin paramagnetic particles/biotinylated anti-drug antibody/drug complexes					

CBA setup

The CBA is based on a commercially available ADCC kit (Promega ADCC Reporter Bioasay). Antigen-expressing target cells are incubated with a fixed concentration of the antibody drug and with genetically engineered ADCC effector cells, which express luciferase upon antibody binding and downstream NFAT pathway activation (Figure 2, Promega[®]). In the presence of nAbs-containing serum, antibody binding and luciferase relative light units (RLU) signal are decreased, allowing for the semiquantitative detection of nAbs.

Figure 2: CBA setup

	Use supernata	ant to detect nAbs	
S		ion procedure on 3.5 µg/mL drug tion curve. (A) RLU; (B) signal-to-	
A NIN	20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 1 1 1 1 1 1 1 1 1 1 1 1 1	eted ad 0	
	1 10 100 1000 10000 drug (ng/mL)	0 1 10 100 1000 1000 drug (ng/mL))0

Figure 6: Effect of drug depletion procedure on nAb samples spiked with (A) 3.5 μ g/mL and (B) 10 μ g/mL drug in the CLB

2. Matrix interference

<u>Problem:</u> Severe matrix/buffer interference of processed samples was observed in the CBA setup. No matrix interference was observed in the CLB.

Discussion and Conclusions

The following issues were observed during method development of the CBA and CLB setups:

- Poor free drug tolerance and high probability of false positives in both assays, which were significantly improved by addition of a sample drug depletion procedure prior to nAb detection
- Severe matrix/buffer interference in the CBA, which was only partially improved by an additional sample precipitation step prior to nAb detection
- Due to the precipitation step and to higher assay variability of the CBA (cutpoint run %CV was 21.26% compared to 10.59%)

Solution: Precipitate sample supernatant after the free drug depletion procedure with 16% PEG and resuspend sample pellets in CBA assay buffer.

<u>Result:</u> The additional PEG precipitation step in the CBA lead to nAb signal loss/decreased sensitivity as evaluated in both the CBA and the LBA setups (Figure 7).

Figure 7: Effect of PEG precipitation on 100 ng/mL nAbs signal in the (A) CBA and (B) CLB setup

CLB setup

The CLB assay is based on ECLIA detection of antigen-antibody drug binding using a streptavidin-coated Meso Scale Discovery plates, biotinylated antigen, and a fixed concentration of Sulfo-Tag-labeled antibody drug (Figure 3A). In the presence of nAbs-containing serum, antibody binding and ECLIA RLU signal are decreased, allowing for the semi-quantitative detection of nAbs (Figure 3B). The CLB setup uses the antigen – antibody drug binding readout, which is the critical step in ADCC MOA.

in the CLB), the sensitivity in the CBA was considerably worse than in the CLB (2.587 μ g/mL vs. 0.156 μ g/mL)

We demonstrated superiority of the CLB over the CBA nAb assay against a therapeutic antibody with ADCC MOA for the key parameters robustness and sensitivity. Based on this comparison, the CLB method was chosen for further development and was successfully qualified.

Considering the MOA of the drug and the limitations encountered with the functional CBA, our comparison study showed that a robust and sensitive CLB assay can be the format of choice when investigating nAbs.

References

Assay Development and Validation for Immunogenicity Testing of Therapeutic Protein Products. Guidance for Industry. Draft Guidance. US FDA 2016

Poster presentation at EBF 2018

www.celerion.com