# QUANTIFICATION OF 11-DEHYDRO THROMBOXANE B IN HUMAN URINE BY LC-MS/MS - SELECTIVE AND SENSITIVE

Andreas Roemmelt, Patrick Miller, Alan Dzerk, Markus Bachmann, Matthias Sury and Petra Struwe Celerion Switzerland AG, 8320 Fehraltorf, Switzerland



## INTRODUCTION

Thromboxane A<sub>2</sub> (TXA<sub>2</sub>) is an important biomarker in multiple biological processes in the human body. Persistent biosynthesis of TXA<sub>2</sub> has been associated with several ageing-related diseases, including diabetes mellitus, obesity, cardio- and cerebrovascular or chronic inflammatory diseases. TXA<sub>2</sub> is difficult to measure since it is rapidly metabolized to Thromboxane  $B_2$ (TXB<sub>2</sub>) and further to 11-dehydro TXB<sub>2</sub>, which is excreted in urine. Therefore, quantification of 11-dehydro TXB, in urine is a suitable readout of TXA, synthesis in the human body. Here we present a fully validated SPE-LC-MS/MS assay for the quantification of 11-dehydro TXB2 in human urine in the range of 25.0 - 2500 pg/mL using a sample volume of 1 mL.

## **LC-MS/MS CONDITIONS**

| Chromatographic conditions |                                                               |  |  |  |  |
|----------------------------|---------------------------------------------------------------|--|--|--|--|
| UHPLC                      | Waters ACQUITY UPLC <sup>™</sup> I-Class                      |  |  |  |  |
| Analytical column          | Waters ACQUITY UPLC <sup>™</sup> BEH C18, 50 x 2.1 mm, 1.7 µm |  |  |  |  |
| Mobile phase A             | Water / Acetic Acid (75:25 v/v)                               |  |  |  |  |
| Mobile phase B             | Methanol / Acetonitrile (60:40 v/v)                           |  |  |  |  |
|                            |                                                               |  |  |  |  |



**Figure 1:** Structure of 11-dehydro Thromboxane B<sub>2</sub>

#### **PREPARATION OF STANDARD (STD) AND QUALITY CONTROL (QC) SAMPLES**

Because 11-dehydro TXB<sub>2</sub> is an endogenous compound, calibration standard samples were prepared in an analyte-free surrogate matrix (Urisub<sup>®</sup>). For QC sample preparation, in-house collected individual urine samples were screened for 11-dehydro TXB, concentration levels. Selected urine samples were then pooled to reach QC Low level. For

| 0.45 mL/min |
|-------------|
| 45 °C       |
| 20 μL       |
| 5.0 min     |
|             |

#### **MS/MS conditions**

**Mass spectrometers** SCIEX Triple QuadTM 5500 / SCIEX Triple QuadTM 6500

| Source/Polarity | APCI / Negative                                      |  |  |
|-----------------|------------------------------------------------------|--|--|
| MRM transitions | m/z 367.0 -> 161.0 (11-dehydro TXB <sub>2</sub> )    |  |  |
|                 | m/z 371.0 -> 309.0 (11-dehydro TXB <sub>2</sub> -IS) |  |  |

## **CHROMATOGRAMS**



preparation of QC Med, QC High and dilution quality control (DQC) samples, aliquots of the QC Low pool were spiked with 11-dehydro TXB<sub>2</sub>. QC LLOQ samples were prepared in Urisub<sup>®</sup>.

## SAMPLE EXTRACTION PROCEDURE

Due to the chemical properties of the analyte, samples were extracted using a mixed mode anion exchange solid phase extraction (MAX SPE) plate. This optimized procedure showed high recovery of the analyte (91.0 – 96.0%) in human urine) resulting in high sensitivity of the assay.

- 1 mL of STD / QC / Urine sample
- Add 50 µL of isotope labeled internal standard
- Add 1.0 N Hydrochloric acid (HCI) and incubate for 30 min
- Add methanol (MeOH) to each sample
- Condition plate with a mixture of methanol and Hydrochloric acid Load samples on SPE plate

#### **Removal of hydrophilic interferences**

- Wash sorbent using a mixture of HCI / water / MeOH (Binding of 11-dehydro TXB<sub>2</sub> to the sorbent is based on hydrophobic interaction)

#### Within-Batch and Between-Batch Precision and Accuracy Results

|                                             |                                | QC LLOQ<br>25.0 pg/mL | QC Low<br>62.4 pg/mL | QC Med<br>256 pg/mL | QC High<br>1910 pg/mL | DQC*<br>6010pg/mL |
|---------------------------------------------|--------------------------------|-----------------------|----------------------|---------------------|-----------------------|-------------------|
| Run 1                                       | Accuracy<br>(%)<br>CV (%)<br>n | 106.4<br>4.1<br>6     | 101.3<br>1.6<br>6    | 98.8<br>0.8<br>6    | 99.0<br>1.2<br>6      | 102.2<br>1.4<br>6 |
| Run 2                                       | Accuracy<br>(%)<br>CV (%)<br>n | 105.6<br>3.3<br>6     | 101.0<br>1.1<br>6    | 98.8<br>0.8<br>6    | 99.5<br>0.6<br>6      |                   |
| Run 3                                       | Accuracy<br>(%)<br>CV (%)<br>n | 102.8<br>5.4<br>6     | 101.1<br>3.2         | 99.2<br>1.4<br>6    | 100.5<br>1.5<br>6     |                   |
| Inter-batch<br>Precision<br>and<br>Accuracy | Accuracy<br>(%)<br>CV (%)<br>n | 104.8<br>4.4<br>18    | 101.1<br>2.0<br>18   | 98.8<br>1.0<br>18   | 100.0<br>1.3<br>18    |                   |



Loading

Step 1:

Step 2:

Elution

#### **Removal of hydrophobic interferences**

- Add Acetate buffer adjusted to pH 6.0 using Ammonia solution (Shift in pH creates the carboxylate anion of 11-dehydro TXB, that interacts with the quaternary ammonium function of the sorbent)
- Wash sequentially with water, methanol, acetonitrile and dichloromethane (DCM)
- Elute analyte using DCM / Formic acid (Shift in pH protonates 11-dehydro TXB<sub>2</sub>, which consequently elutes from the sorbent) • Evaporate to dryness
- Reconstitute in water / methanol

Figure 2: Sample extraction scheme for 11-dehydro TXB<sub>2</sub>



#### Conclusions

Our SPE-LC-MS/MS assay for quantification of 11-dehydro TXB<sub>2</sub> in human urine was successfully validated according to international guidelines. This highly selective and sensitive method allows for quantification of endogenous 11-dehydro TXB, levels in a clinically relevant range of 25.0 – 2500 pg/mL.

Figure 3: Incurred sample reanalysis (ISR) of 27 individual human urine samples analyzed at Celerion Switzerland AG and Celerion Inc.