

Oncology Drug Development: Phase I Case Studies in Healthy Volunteers

Mike Di Spirito, MSc 22-March-2018 ASCPT

- Tobacco cancer biomarkers of exposure
- Interesting science using healthy normal volunteers to mimic the diseased state
- Celerion's early phase oncology small molecule experience in healthy normal volunteers
 - Case studies

Smoke/Vape

The lesser of 2 evils?

Tobacco Use Is the Single Largest Preventable Cause of Death in the US

<u>Cancer</u> – bladder, cervix, esophagus, kidney, **larynx**, leukemia, lung, oral cavity, pancreas, stomach

<u>Cardiovascular disease</u> – atherosclerosis, stroke, coronary heart disease

<u>Respiratory disease</u> – COPD, pneumonia, impaired lung development and growth, impaired pulmonary function, poor asthma control

<u>Reproductive effects</u> – SIDS, infertility, low birth weight, pregnancy complications

<u>Others</u> – cataracts, diminished health status, low bone density, hip fractures, peptic ulcer disease

Cancer of the Voice Box - Larynx

- Traditional Therapy
 - Surgery
 - Laser Therapy
 - Radiation Therapy
 - Chemotherapy
 - Typically parenteral admin
 - Non-specific target
 - Serious dose- and duration-limited Aes
 - Can produce 2ndary malignancies

Cigarette Smoke Components

Cigarette Smoke Components

Common Endpoints: Biomarkers of Exposure

Exposure Component	Measured Analyte
BLOOD	
Nicotine	Nicotine, cotinine, trans-3'-Hydroxycotinine
Carbon monoxide	Carboxyhemoglobin
URINE	
1,3-Butadiene	Dihydroxybutylmercapturic acid, monohydroxybutenylmercapturic acid
Acrolein	3-Hydroxypropylmercapturic acid
Aldehydes	Acetaldehyde, formaldehyde
Benzene	S-phenyl mercapturic acid
Benzo[a]pyrene	3-hydroxybenzo[a]pyrene
Crotonaldehyde	3-Hydroxy-1-methylpropylmercapturic acid
Nicotine Equivalence	Nicotine, cotinine, trans-3'-hydroxycotinine, nicotine-N-glucuronide, cotinine-N-glucuronide, trans-3'-hydroxycotinine-O-glucuronide
Pyrene	1-Hydroxypyrene
Tobacco-Specific Nitrosamines	NNAL, NNN, NAB, NAT
Polyaromatic Hydrocarbons	1- and 2-hydroxynaphthalene; 2-hydroxyfluorene; 1-, 2-, 3-, 4-, and 9-hydroxyphenanthrene
Aromatic Amines	3- and 4-aminobiphenyl, o-toludine, 2-aminonaphthalene
Urine Mutagenicity	Ames Test

Forced Switch Study in Smokers

- Forced-switch parallel proof-of-concept study
- Assessed exposure to biomarkers of tobacco exposure following short-term ad libitum use of 3 electronic products vs dual (regular + electronic) vs cessation.
- Baseline measurements regular cigarettes on Day -1
- Switch Post-product use measurements Days 1-6
- Change from baseline in biomarkers of exposure presented after 5 days

Change in Urine Biomarkers of Exposure After 5 Days

Tobacco Product Risk Continuum

Impact of Tobacco Use

- Tobacco induces CYP1A
- Constitutive activity of CYP1A low in normal individuals, however substantially upregulated
- If preclinical testing suggests CYP1A catalyzed metabolism: Consider testing in vivo, impact of smoking status on PK in early clinical pharmacology study before Phase II/III
- Mitigates risk of treatment failure in cancer patients who continue to smoke during treatment

The Giant

Acromegaly & Gigantism

- Usually caused by a noncancerous (benign) pituitary tumor – adenoma
- Overproduction of growth hormone
 - Tall stature, obesity
 - Macrocephaly
 - exaggerated growth of hands and feet, with thick fingers and toes
 - Coarse facial features
 - Wide spacing of the teeth
- Morbidity and mortality rates are high
 - Cardiovascular disorders
 - Cerebrovascular disorders
 - Respiratory disorders
 - Malignancies

Stimulation/Inhibition of GH

- Growth hormone-releasing hormone (GHRH)/arginine challenge (w/treatment/alone)
 - GHRH IV bolus injection
 - Arginine Hydrochloride Injection IV infusion over 30 minutes
- Somatostatin analogs used for therapy
 - Octreotide, Sandostatin, Somatuline
- Usual drug PK profiles (AUC, Cmax, Tmax, T1/2)
- PD after challenge (AUEC, Emax, Tmax)

Typical GH Profile Post-Challenge (Induced) & Treatment (Suppression)

Early Phase Oncology Drug Development – Focus Change

Yesterday

CYTOTOXIC

CYTOTOXIQUE

Today

- Noncytotoxic oncology therapeutics
- Opportunity for HNS
- >60 studies (Celerion since 2011) across variety of targets - VEGFR, EGFR, FGFR, MET, RET, BTK...
- FIH SAD/MAD, DDI, NDAenabling, BA, FE, Timing of meal, ADME, pH, TQT, cQT, RI, HI, Smoking effect, Palatability

Novel Treatments in Oncology – Kinase Inhibitors

- Some kinase inhibitors are used to treat cancer
- Kinase inhibitors is a substance that blocks a type of enzyme called a kinase
- Human cells have many different kinases, and they help control important functions
 - cell signaling, metabolism, division, and survival
- Certain kinases are more active in some types of cancer cells and blocking them may help keep the cancer cells from growing
- Kinase inhibitors may also block the growth of new blood vessels that tumors need to grow

Kinase Inhibitors

- Inhibit Tyrosine/ Serine/ Threonine Kinases
- Most are orally bioavailable
- More specifically targeting overexpressed receptors and/or enzymes
- More selective for cancer cells vs. healthy cells
- Not without Adverse Event concerns
 - FIH starting dose

Considerations Before Testing Oncology Drugs in Healthy Subjects

<u>General</u>

- Mutagenicity/carcinogenicity
- Reproductive toxicity

Class Specific Concerns

- Skin rashes and other cutaneous reactions
- Hepatotoxicity
- Cardiovascular safety
- Gastrointestinal irritation (nausea/vomiting)

Developing Oncology Products: Phase I Timeline/Cost

- Estimates range from at least 12-18 months for n=25 oncology patients
- Compared to 4-6 months for healthy normal subjects (HNS)
- Patients studies can cost into the millions
- Targeted therapies alter the risk vs. benefit ratio relative to cytotoxic agents
- Unless compound causes direct DNA damage, FDA typically allows dosing in HNS

To Consider - Acid-Reducing Agents on PK of TKI Class Compound

- Use of Acid-Reducing Agents in Cancer
 Patients ranges from 20-70% across cancer
 types
- Not a class effect
- Similar to food-effect
 - Test early before patient studies

DDI - CYP3A4/P-gp Inhibition/Induction – Single Study

- Part A Fixed Sequence
 - Drug SD Itraconazole MD -Coadmin
- Dose Drug Day 1
 - Drug PK, washout
- Itraconazole MD, minimum 5 days and throughout sampling
- Co-admin Drug+Itraconazole on Day 5 or later
 - Drug PK

- Part B Fixed Sequence
 - Drug SD Rifampin MD Coadmin with Drug SD on Days 1 and 10
- Dose Drug Day 1
 - Drug PK, washout
- Coadmin Rifampin SD with Drug SD
 - Drug PK, washout if necessary
- Rifampin dosing for at least 10 days
- Co-admin Drug+Rifampin on Day 10 or later
 - Drug PK

DDI - CYP3A4/P-gp Inhibition/Induction

MD Itraconazole

SD & MD Rifampin

Consider cQT Early in Development

- Exposure-Response Analysis will assess cardiac liability
- Data available across a series of doses
- Could come from SAD/MAD/DDI/High Exposure studies
- Data could be collected, stored, analyzed at a later date

Data Allows for Evaluation of cQT - Change From Baseline in QTcF vs Time-Matched Concentrations

Radioactivity Plasma Profile

The Total Radioactivity concentration-equivalent vs time plot is a sum plot of drug + all of its RA metabolites.

- Observed total RA Cmax \geq Drug Cmax
- Estimated total RA AUC0-inf ≥ Drug AUC0-inf
- Estimated total RA terminal $t1/2 \ge Drug$ terminal t1/2

ADME/Mass Balance

Plasma Profile

Dose Recovered

Oncology Drug Development – HI/RI

Time

In Summary

- Development of noncytotoxic oncology therapeutics in the last decade has increased and is now the norm
 - Opportunity to test on HNS rather than patients
 - Opportunity to use classic Phase I designs
 - Shorter study timelines from start to finish
 - Robust characterization of PK
 - Lower costs per study
- Celerion has experience in all aspects of early phase development for your new oncology drug
- Together, we can beat it!

Thank you!

Questions?