Development of PK and Anti-Drug Antibody Assay with High Drug Tolerance for Bevacizumab (Avastin[®]) and its Biosimilars

S. Kar, N. Chavan, C. Sheldon, R. Islam Celerion, Lincoln, NE USA

Celerion Translating Science to Medicine

Introduction

Bevacizumab (Avastin[®]) is a recombinant humanized monoclonal antibody approved globally for treatment of multiple types of cancer. It is a popular target for biosimilar developers as the patents on Avastin[®] will expire in July 2019 in US and in January 2022 in Europe.

Anti-Drug Antibody (ADA) immunogenicity and pharmacokinetic (PK) assays for Bevacizumab are challenging due to the fact that a high level of drug is expected in clinical samples. The mean trough concentration range is $127 \pm 29 \mu g/ml$ (range 77–155), and the mean peak concentration is $149 \pm 13 \mu g/ml$ (range 113–157). In addition, endogenous VEGF can interfere with the detection of Bevacizumab and ADA. This high level of drug concentration combined with VEGF interference necessitates the development of de novo, highly reliable assays for the biosimilar.

Results

 Table 1. Precision and Accuracy of Bevacizumab PK Assay

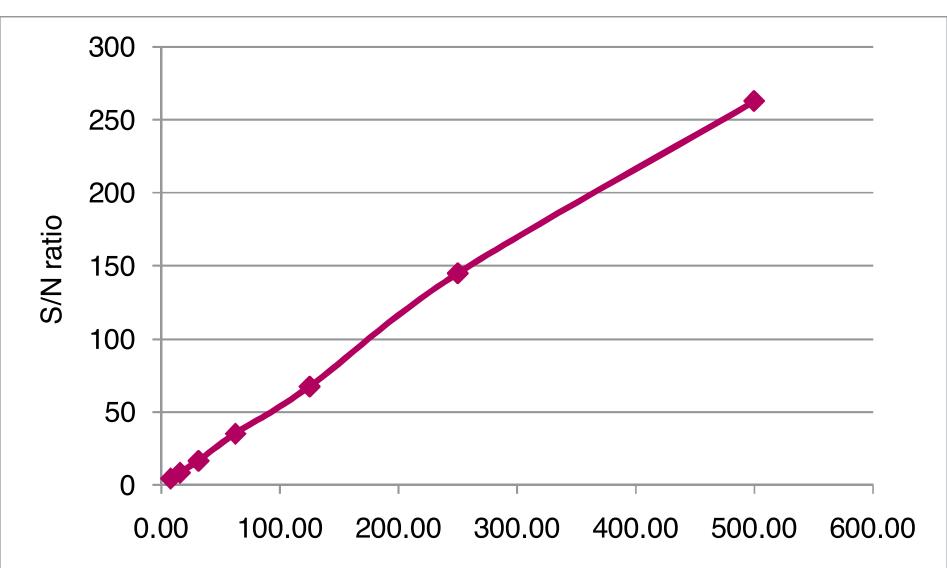
		·				
Date	Date Batch		QC A (150 ng/mL)	QC B (800 ng/mL)	QC C (1500 ng/mL)	ULOQ (2000 ng/mL)
11-Apr-2018	8	57.4	164	904	1580	1990
		50.4	168	799	1500	1930
		54.5	141	786	1420	*No Value
11-Apr-2018	9	53.4	151	812	1540	2190
		49.6	164	802	1580	2270
		49.5	*No Value	772	1660	2240
13-Apr-2018	10	51.7	159	795	1430	1950
		53.2	149	778	1440	1650
		44.8	131	755	1320	1690
13-Apr-2018	11	50.6	150	822	1620	1990
		51.3	149	823	1410	1920
		45.3	127	797	1440	1720
13-Apr-2018	12	58.5	162	821	1580	2060
		64.0	167	833	1480	1750
		51.1	146	764	1430	1620
Mean		52.4	152	804	1500	1930
S.D.		4.91	12.9	35.9	94.4	217
%CV		9.4	8.5	4.5	6.3	11.2
%Theoretical		104.8	101.3	100.5	100.0	96.5
%Bias		4.8	1.3	0.5	0.0	-3.5
n		15	14	15	15	14
Overall %CV		8.0				
* QMV=questionable multiple values						

 Table 4. Freeze-Thaw Stability (4 cycles) of Bevacizumab PK

	FT LLOQ	FT ULOQ	
	50.0 ng/mL	2000 ng/mL	
	41.1	1870	
	48.1	1970	
	51.7	1760	
	46.0	1860	
	49.7	1710	
	51.5	2150	
Mean	48.0	1890	
% CV	8.4	8.4	
% Theoretical	96.0	94.5	
n	6	6	

Here, we present an ELISA PK assay and an immunogenicity assay that utilizes solid phase extraction with double acid dissociation (SPEAD) on the Meso Scale Discovery (MSD) platform.

Methods


PK Assay Format

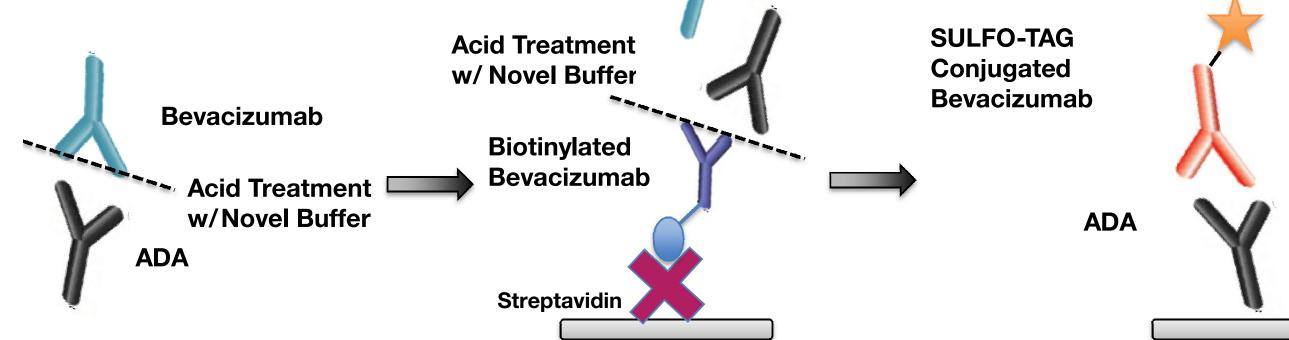
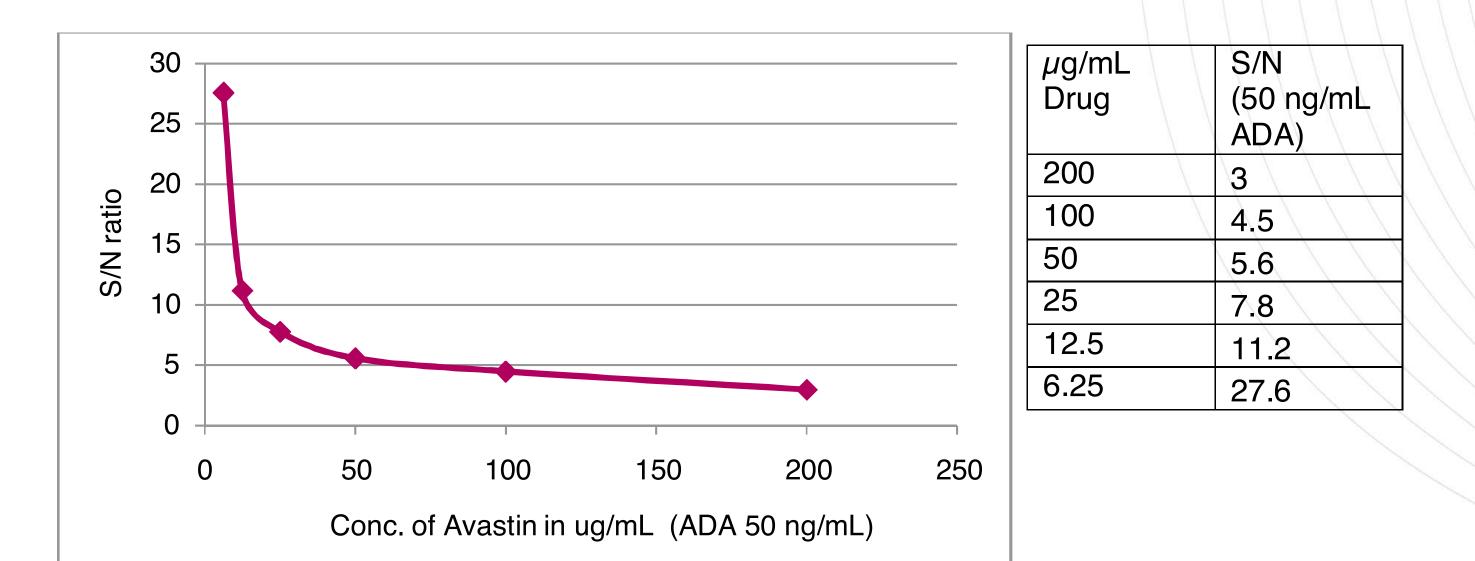

The PK assay for total bevacizumab is a sandwich ELISA, wherein VEGF₁₆₅ is the capture ligand and anti-bevacizumab is the detection antibody with HRP detection. A proprietary buffer was used to remove VEGF from study samples to minimize VEGF interference.

Figure 1. ADA Assay Format

Figure 2. Sensitivity of Bevacizumab ADA Assay (7.8 ng/mL)


ADA Assay Format

The Immunogenicity method utilized a modified solid phase extraction with acid dissociation (SPEAD) assay with Sulfo-Tag detection. Samples containing bevacizumab and ADA were pre-dissociated and neutralized using proprietary buffers before incubation with biotinylated bevacizumab on a streptavidin coated plate. The ADA was then dissociated, neutralized, and coated onto a MSD plate and detected using Sulfo-Tag labeled bevacizumab.

Table 2. Dilution Linearity of Bevacizumab						
	DF=20 QC D 20000 ng/mL	DF=200 QC E 250000 ng/mL				
	20200	231000				
	20300	243000				
	19500	244000				
	16400	267000				
	17900	274000				
	17400	199000				
	18600	243000				
Mean						
% CV	8.7	11.1				
%						
Theoretical	93.0	97.2				
n	6	6				

Conc. of ADA in ng/mL

Figure 3. Drug Tolerance of Bevacizumab ADA Assay (50 ng/mL ADA detectable with 100 μ g/mL of Drug)

Conclusion & Future Work

The results indicate the PK and ADA assays for Bevacizumab are "validatable" with sensitivity and drug tolerance that meets FDA

Table 3. Matrix Effect Testing of Bevacizumab PK Assay

		Low Spike			High Spike		
Mean		50.0 ng/mL			1600 ng/mL		
		Expected Measured Concentration Concentration		Expected Measured Concentration Concentration		on	
l at#	Basal Level						
Lot#	ng/mL	ng/mL	ng/mL	% Dev.	ng/mL	ng/mL	% Dev.
1	4.81	54.8	50.2	-8.4	1605	1610	+0.3
2	22.8	72.8	66.1	-9.2	1623	1590	-2.0
3	60.7	111	100	-9.7	1661	1660	-0.0
4	0.0	50.0	42.9	-14.2	1600	1720	+7.5
5	24.8	74.8	78.0	+4.3	1625	1630	+0.3
6	46.6	96.6	88.6	-8.3	1647	1610	-2.2
7	0.0	50.0	39.8	-20.4	1600	1510	-5.6
8	62.5	113	109	-3.1	1663	1660	-0.2
9	0.0	50.0	48.8	-2.4	1600	1600	+0.0
10	65.5	116	123	+6.5	1666	1510	-9.3

requirements.

Future experiments will validate the assays according to FDA Bioanalytical Guidance for PK and immunogenicity assays for Bevacizumab and its biosimilars.

Novel Aspect

Development of novel dissociation and neutralization buffers for the ADA assay allowed removal of high levels of tightly bound bevacizumab to improve drug tolerance. Combined with a double dissociation and electrochemiluminescence, we improved assay sensitivity over conventional immunogenicity methods.

